Bài giảng Cấu trúc dữ liệu và giải thuật - Các khái niệm cơ bản - Văn Chí Nam
Tóm tắt Bài giảng Cấu trúc dữ liệu và giải thuật - Các khái niệm cơ bản - Văn Chí Nam: ...toán học người Đức Paul Bachmann vào năm 1892. Big-O được trở nên phổ biến hơn nhờ nhà toán học Landau. Do vậy, Big-O cũng còn được gọi là ký hiệu Landau, hay Bachmann-Landau. Donald Knuth được xem là người đầu tiên truyền bá khái niệm Big-O trong tin học từ những năm 1970. Ông cũn...ng không chính xác: f(n) > O(g(n)) Chỉ sử dụng như sau: f(n) là O(g(n)), hoặc f(n) với bậc O(g(n)) Cấu trúc dữ liệu và giải thuật - HCMUS 2013 26 Hãy cho biết các hàm số sau đây là Big-O của hàm số nào: 8n3 – 9n 7log2n + 20 7log2n + n Cấu trúc dữ liệu và giải thu...thuật - HCMUS 2013 35 Bước 1. Gán i = 1. Bước 2. Trong khi i ≤ n và x ai thì tăng i thêm 1. while (i ≤ n and x ai) i = i + 1 Bước 3. Nếu i ≤ n, trả về giá trị là i. Ngược lại, i > n, trả về giá trị 0 cho biết không tìm được x trong dãy a. Cấu trúc dữ liệu v...
Giảng viên: Văn Chí Nam – Nguyễn Thị Hồng Nhung – Đặng Nguyễn Đức Tiến Cấu trúc dữ liệu và giải thuật - HCMUS 2013 2 Kenneth H.Rosen, Toán rời rạc ứng dụng trong Tin học, ltb. 5, nxb. Giáo Dục, 2007, tr. 131 - 143. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 2nd edition, Addision Wesley, 1998, p. 41 – 67. Cấu trúc dữ liệu và giải thuật - HCMUS 2013 3 Tổng quan về cấu trúc dữ liệu Tiêu chuẩn đánh giá thuật toán Độ tăng của hàm Độ phức tạp thuật toán Các phương pháp đánh giá độ phức tạp Cấu trúc dữ liệu và giải thuật - HCMUS 2013 4 According to Peter J. Denning, the fundamental question underlying computer science is, "What can be (efficiently) automated?“ [Wikipedia.org, tháng 9 – 2009] Cấu trúc dữ liệu và giải thuật - HCMUS 2013 5 Để giải quyết nhu cầu tự động hóa, nhu cầu căn bản của Khoa học Máy tính, các nhà khoa học máy tính phải tạo ra sự trừu tượng hóa về những bài toán trong thế giới thực, để người sử dụng máy tính có thể hiểu được và có thể biểu diễn và xử lý được bên trong máy tính. Ví dụ: Mô hình hóa việc biểu diễn cầu thủ bóng đá Mô hình hóa mạch điện Cấu trúc dữ liệu và giải thuật - HCMUS 2013 6 Thông thường, tìm ra một sự trừu tượng hóa thường rất khó, vì: Giới hạn về khả năng xử lý của máy. Phải cung cấp cho máy một mô hình về thế giới đến mức chi tiết như những gì con người có, không chỉ là sự kiện mà còn cả các nguyên tắc và mối liên hệ. Cấu trúc dữ liệu và giải thuật - HCMUS 2013 7 Sự trừu tượng hóa ở đây được sử dụng là sự đơn giản hóa, thay thế một tình huống phức tạp và nhiều chi tiết trong thế giới thực bằng một mô hình dễ hiểu để chúng ta có thể giải quyết được bài toán trong đó. Có thể hiểu là chúng ta loại bớt những chi tiết có tác dụng rất ít hoặc không có tác dụng gì đối với lời giải của bài toán -> tạo ra một mô hình cho phép chúng ta giải quyết với bản chất của bài toán. Cấu trúc dữ liệu và giải thuật - HCMUS 2013 8 Kiểu dữ liệu (của biến) xác định tập các giá trị mà biến có thể chấp nhận và các phép toán có thể thực hiện trên các giá trị đó. Ví dụ: Kiểu dữ liệu kiểu số nguyên, Kiểu dữ liệu kiểu số thực, Kiểu dữ liệu ký tự. Cấu trúc dữ liệu và giải thuật - HCMUS 2013 9 Kiểu dữ liệu sơ cấp là kiểu dữ liệu mà giá trị của nó là đơn nhất. Ví dụ: Trong ngôn ngữ lập trình C chuẩn, kiểu int gọi là kiểu sơ cấp vì kiểu này bao gồm các số nguyên từ -32768 đến 32767 và các phép toán +, -, *, /, % Mỗi ngôn ngữ đều có cung cấp sẵn các kiểu dữ liệu cơ bản (basic data type) dùng như những thành phần cơ sở để tạo nên các dữ liệu có cấu trúc phức tạp hơn. Cấu trúc dữ liệu và giải thuật - HCMUS 2013 10 Kiểu dữ liệu có cấu trúc (Structured Data Type): là kiểu dữ liệu mà giá trị của nó là sự kết hợp các giá trị khác. Ví dụ: Kiểu dữ liệu có cấu trúc gồm các giá trị giao dịch của một phiên giao dịch (chứng khoán). Kiểu dữ liệu mô tả lí lịch sinh viên. Còn được gọi là kiểu dữ liệu tổ hợp. Cấu trúc dữ liệu và giải thuật - HCMUS 2013 11 Kiểu dữ liệu trừu tượng (abstract data type - ADT) bao gồm tập hợp các dữ liệu và các thao tác trên các dữ liệu đó. Cần phải chú ý nhiều về đó là thủ tục hoặc dữ liệu GÌ thay vì chú ý là LÀM SAO cài đặt hoặc hiện thực chúng. Ví dụ: Kiểu dữ liệu trừu tượng PhanSo. Kiểu dữ liệu trừu tượng Ngay. Kiểu dữ liệu trừu tượng Gio. Cấu trúc dữ liệu và giải thuật - HCMUS 2013 12 Cấu trúc dữ liệu là các thành phần của ngôn ngữ lập trình dùng để lưu giữ dữ liệu trong kiểu dữ liệu trừu tượng. Ví dụ mảng (array), tập tin (file), danh sách liên kết (linked list), cây nhị phân, Các cấu trúc dữ liệu được chọn phải có khả năng biểu diễn được tập input và output của bài toán cần giải. Cấu trúc dữ liệu và giải thuật - HCMUS 2013 13 Mặc dù tên nghe có vẻ giống nhau, “danh sách” và “danh sách liên kết” là những khái niệm khác nhau. Danh sách là kiểu dữ liệu trừu tượng (ADT). Danh sách liên kết là một cấu trúc dữ liệu. Cấu trúc dữ liệu và giải thuật - HCMUS 2013 14 Big-O. Một số kết quả Big-O quan trọng. Cấu trúc dữ liệu và giải thuật - HCMUS 2013 15 Khái niệm Big-O lần đầu tiên được đưa ra bởi nhà toán học người Đức Paul Bachmann vào năm 1892. Big-O được trở nên phổ biến hơn nhờ nhà toán học Landau. Do vậy, Big-O cũng còn được gọi là ký hiệu Landau, hay Bachmann-Landau. Donald Knuth được xem là người đầu tiên truyền bá khái niệm Big-O trong tin học từ những năm 1970. Ông cũng là người đưa ra các khái niệm Big- Omega và Big-Theta. Cấu trúc dữ liệu và giải thuật - HCMUS 2013 16 Cho f và g là hai hàm số từ tập các số nguyên hoặc số thực đến số thực. Ta nói f(x) là O(g(x)) nếu tồn tại hằng số C và k sao cho: |f(x)| ≤ C |g(x)| với mọi x > k Cấu trúc dữ liệu và giải thuật - HCMUS 2013 17 Cho f và g là hai hàm số từ tập các số nguyên hoặc số thực đến số thực. Ta nói f(x) là O(g(x)) nếu tồn tại hằng số C và k sao cho: |f(x)| ≤ C |g(x)| với mọi x > k • Ví dụ, hàm f(x) = x2 + 3x + 2 là O(x2). Thật vậy, khi x > 2 thì x < x2 và 2 < 2x2 Do đó x2 + 3x + 2 < 6x2. Nghĩa là ta chọn được C = 6 và k = 2. Cấu trúc dữ liệu và giải thuật - HCMUS 2013 18 Big-O giúp xác định được mối quan hệ giữa f(x) và g(x), trong đó g(x) thường là hàm ta đã biết trước. Từ đó ta xác định được sự tăng trưởng của hàm f(x) cần khảo sát. C và k trong định nghĩa của khái niệm Big-O được gọi là bằng chứng của mối quan hệ f(x) là O(g(x)). Cấu trúc dữ liệu và giải thuật - HCMUS 2013 19 Big-O phân hoạch được các hàm với các độ tăng khác nhau. Nếu có hai hàm f(x) và g(x) sao cho f(x) là O(g(x)) và g(x) là O(f(x)) thì ta nói hai hàm f(x) và g(x) đó là có cùng bậc. Ví dụ: f(x) 7x2 là O(x2) (chọn k = 0, C = 7). Do vậy 7x2 và x2 + 3x + 2, và x2 là 3 hàm có cùng bậc. Cấu trúc dữ liệu và giải thuật - HCMUS 2013 20 Lưu ý: 7x2 cũng là O(x3) nhưng x3 không là O(7x2). Thật vậy: Nếu x3 là O(7x2) thì ta phải tìm được C và k sao cho |x3| ≤ C|7x2| x ≤ 7C với mọi x > k. Điều này không thể xảy ra vì không thể tìm được k và C nào như vậy. Do vậy, trong quan hệ f(x) là O(g(x)), hàm g(x) thường được chọn là nhỏ nhất có thể. Cấu trúc dữ liệu và giải thuật - HCMUS 2013 21 1. Hàm đa thức: f(x) = anx n + an-1x n-1 + + a1x + a0 Khi đó f(x) là O(xn). 2. Hàm giai thừa: f(n) = n! là O(nn) 3. Logarit của hàm giai thừa: f(n) = logn! là O(nlogn) 4. Hàm điều hòa H(n) = 1 + 1/2 + 1/3 + .. + 1/n là O(logn) Cấu trúc dữ liệu và giải thuật - HCMUS 2013 22 Nếu f(n) là O(g(n)) thì c.f(n) là O(g(n)) với c là hằng số. Cho f1(x) là O(g1(x)) và f2(x) là O(g2(x)). Khi đó: Quy tắc tổng: (f1(x)+f2(x)) là O(max(|g1(x)|, |g2(x)|)) Quy tắc nhân: (f1(x) * f2(x)) là O(g1(x) * g2(x)). Cấu trúc dữ liệu và giải thuật - HCMUS 2013 23 Cấu trúc dữ liệu và giải thuật - HCMUS 2013 24 Cấu trúc dữ liệu và giải thuật - HCMUS 2013 25 Nói như sau là không chính xác: f(n) = O(g(n)) Nói như dưới đây lại càng không chính xác: f(n) > O(g(n)) Chỉ sử dụng như sau: f(n) là O(g(n)), hoặc f(n) với bậc O(g(n)) Cấu trúc dữ liệu và giải thuật - HCMUS 2013 26 Hãy cho biết các hàm số sau đây là Big-O của hàm số nào: 8n3 – 9n 7log2n + 20 7log2n + n Cấu trúc dữ liệu và giải thuật - HCMUS 2013 27 Cấu trúc dữ liệu Giải thuật Chương trình Cấu trúc dữ liệu và giải thuật - HCMUS 2013 28 Tốc độ thực thi. Tính chính xác. Đơn giản, dễ hiểu, dễ bảo trì. Mức phổ dụng Cấu trúc dữ liệu và giải thuật - HCMUS 2013 29 Thời gian giải quyết một bài toán phụ thuộc vào nhiều yếu tố: Tốc độ thực thi của máy tính (phần cứng lẫn phần mềm). Tài nguyên (ví dụ: bộ nhớ). Thuật toán. Làm thế nào đánh giá được thời gian thực thi hiệu quả? Cấu trúc dữ liệu và giải thuật - HCMUS 2013 30 Đánh giá thời gian thực hiện dựa trên những phép toán quan trọng như: Phép so sánh Phép gán Đánh giá bằng cách tính số lượng các phép toán quan trọng theo độ lớn của dữ liệu. Từ đó, thời gian thực hiện của một thuật toán có thể được đánh giá theo một hàm phụ thuộc vào độ lớn đầu vào. Cấu trúc dữ liệu và giải thuật - HCMUS 2013 31 Bước 1. Gán tổng = 0. Gán i = 0. Bước 2. Tăng i thêm 1 đơn vị. Gán Tổng = Tổng + i Bước 3. So sánh i với 10 Nếu i < 10, quay lại bước 2. Ngược lại, nếu i ≥ 10, dừng thuật toán. Số phép gán của thuật toán là bao nhiêu? Số phép so sánh là bao nhiêu? Gán: 2n + 2, So sánh: n Cấu trúc dữ liệu và giải thuật - HCMUS 2013 32 Khi nào thuật toán cho lời giải thỏa đáng? Phải luôn cho đáp số đúng. Phải hiệu quả (độ phức tạp tính toán) Độ phức tạp thời gian Độ phức tạp của các thuật toán không đổi Trường hợp xấu nhất Trường hợp trung bình Trường hợp tốt nhất Độ phức tạp không gian Cấu trúc dữ liệu và giải thuật - HCMUS 2013 33 Thuật toán: B1. Đặt giá trị cực đại tạm thời bằng số nguyên đầu tiên trong dãy. B2. So sánh số nguyên tiếp sau với giá trị cực đại tạm thời. Nếu nó lớn hơn giá trị cực đại tạm thời thì đặt cực đại tạm thời bằng số nguyên đó. B3. Lặp lại B2 nếu còn các số nguyên trong dãy. B4. Dừng khi không còn số nguyên nào nữa trong dãy. Cực đại tạm thời chính là số nguyên lớn nhất của dãy. Cấu trúc dữ liệu và giải thuật - HCMUS 2013 34 Vì phép sơ cấp sử dụng trong thuật toán là phép so sánh, nên phép so sánh được dùng làm thước đo độ phức tạp. Tại mỗi số hạng, ta thực hiện 2 phép so sánh, 1 phép xem đã hết dãy hay chưa và 1 phép so với cực đại tạm thời. Vì hai phép so sánh được dùng từ số hạng thứ 2 đến n, và thêm 1 phép so sánh nữa để ra khỏi vòng lặp, nên ta có chính xác 2(n-1) + 1 = 2n – 1 phép so sánh. Do vậy, độ phức tạp của thuật toán là O(n). Cấu trúc dữ liệu và giải thuật - HCMUS 2013 35 Bước 1. Gán i = 1. Bước 2. Trong khi i ≤ n và x ai thì tăng i thêm 1. while (i ≤ n and x ai) i = i + 1 Bước 3. Nếu i ≤ n, trả về giá trị là i. Ngược lại, i > n, trả về giá trị 0 cho biết không tìm được x trong dãy a. Cấu trúc dữ liệu và giải thuật - HCMUS 2013 36 Số phép so sánh dùng làm thước đo. Ở mỗi bước của vòng lặp, thực hiện 2 phép so sánh. Cuối vòng lặp, thực hiện 1 phép so sánh. Như vậy, nếu x = ai, số phép so sánh thực hiện là (2i +1). Trong trường hợp xấu nhất, không tìm được x thì tổng số phép so sánh là 2n + 2. Từ đó, thuật toán tìm kiếm tuần tự đòi hỏi tối đa O(n) phép so sánh. Cấu trúc dữ liệu và giải thuật - HCMUS 2013 37 Trong trường hợp tốt nhất, ta bắt gặp x ngay phần tử đầu tiên nên chỉ cần tốn 3 phép so sánh. Khi đó, ta nói thuật toán tìm kiếm tuần tự đòi hỏi ít nhất O(1) phép so sánh. Cấu trúc dữ liệu và giải thuật - HCMUS 2013 38 Nếu x là số hạng thứ i, số phép so sánh sử dụng để tìm ra x là 2i + 1. Do đó, số phép so sánh trung bình ta cần sử dụng là: Như vậy độ phức tạp trung bình của thuật toán tìm kiếm tuần tự là O(n) 22 )1( 2 )...321(2)12(..753 n n n nn n nn n n Cấu trúc dữ liệu và giải thuật - HCMUS 2013 39 Trong thực tế, các phép so sánh cần để xác định xem đã tới cuối vòng lặp hay chưa thường được bỏ qua, không đếm. Trong đa số các trường hợp không đòi khỏi sự khắt khe về tính chính xác, người ta sử dụng Big-O cho mọi trường hợp. Hệ số trong các hàm theo đa thức không được tính trong phân tích độ phức tạp, ví dụ O(n3) và O(20000n3) là như nhau, nhưng trong thực tế đôi khi hệ số rất quan trọng. Cấu trúc dữ liệu và giải thuật - HCMUS 2013 40 Độ phức tạp Thuật ngữ/tên phân lớp O(1) Độ phức tạp hằng số O(log2n) Độ phức tạp logarit O(n) Độ phức tạp tuyến tính O(nlog2n) Độ phức tạp nlog2n O(na) Độ phức tạp đa thức O(an), a > 1 Độ phức tạp hàm mũ O(n!) Độ phức tạp giai thừa Cấu trúc dữ liệu và giải thuật - HCMUS 2013 41 logn n nlogn n2 2n n! 10 3.10-9 10-8 3.10-8 10-7 10-6 3.10-3 102 7.10-9 10-7 7.10-7 10-5 4.1013 năm * 103 1,0.10-8 10-6 1.10-5 10-3 * * 104 1,3.10-8 10-5 1.10-4 10-1 * * 105 1,7.10-8 10-4 2.10-3 10 * * 106 2.10-8 10-3 2.10-2 17 phút * * • Lưu ý: • Mỗi phép toán giả sử thực hiện trong 10-9 giây (~ CPU 1GHz). • *: thời gian lớn hơn 100100 năm Cấu trúc dữ liệu và giải thuật - HCMUS 2013 42 Có một số thuật toán có độ phức tạp trong trường hợp xấu nhất là rất lớn nhưng trong trường hợp trung bình lại chấp nhận được. Đôi khi, trong thực tế ta phải tìm nghiệm gần đúng thay vì nghiệm chính xác. Có một số bài toán tồn tại nhưng có thể chứng minh được không có lời giải cho chúng (ví dụ bài toán Halting). Trong thực tế, đa số ta chỉ khảo sát các bài toán có độ phức tạp đa thức trở xuống. Cấu trúc dữ liệu và giải thuật - HCMUS 2013 43 Phương pháp đếm Phương pháp hàm sinh Một số kết quả hoán vị Các kết quả, định lý liên quan đến các cấu trúc dữ liệu cụ thể Cấu trúc dữ liệu và giải thuật - HCMUS 2013 44 1. Các hàm sau đây có là O(x) hay không? a) f(x) = 10 b) f(x) = 3x + 7 c) f(x) = 2x2 + 2 2. Mô tả thuật toán tìm số nhỏ nhất trong dãy hữu hạn các số tự nhiên. Có bao nhiêu phép so sánh, bao nhiêu phép gán trong thuật toán? Cấu trúc dữ liệu và giải thuật - HCMUS 2013 45 3. Phân tích độ phức tạp của thuật toán tính tổng dãy số sau: 4. Cho biết số phép gán, số phép so sánh trong đoạn code sau đây theo n: sum = 0; for (i = 0; i < n; i++) { sum = sum + i; } ! 1 ... 6 1 2 1 1 n S Cấu trúc dữ liệu và giải thuật - HCMUS 2013 46 5. Cho biết số phép gán, số phép so sánh trong đoạn code sau đây theo n: for (i = 0; i < n ; i++) for (j = 0; j < n; j++) { C[i][j] = 0; for (k = 0; k < n; k++) C[i][j] = C[i][j] + A[i][k]*B[k][j]; } Cấu trúc dữ liệu và giải thuật - HCMUS 2013 47 6. Hãy cho biết các hàm g(n) cho các hàm f(n) dưới đây (f(n) là O(g(n))). f(n) = (2 + n) * (3 + log2n) f(n) = 11 * log2n + n/2 – 3542 f(n) = n * (3 + n) – 7 * n f(n) = log2(n 2) + n Cấu trúc dữ liệu và giải thuật - HCMUS 2013 48
File đính kèm:
- bai_giang_cau_truc_du_lieu_va_giai_thuat_cac_khai_niem_co_ba.pdf