Bài giảng Điện tử số
Tóm tắt Bài giảng Điện tử số: ... nhau trong nhóm thì sẽ bị loại Các nhóm có thể trùng nhau một vài phần tử nhưng không được trùng hoàn toàn và phải nhóm hết các ô bằng 1 Số lượng nhóm chính bằng số lượng số hạng sau khi đã tối thiểu hóa (mỗi nhóm tương ứng với 1 số hạng) 51 Ví dụ CBCBACBAF CABABCCBACBACBACBACBAF ++= ...hực tế, thời gian chuyển biến được đo bằng thời gian chuyển biến từ 10% đến 90% giá trị biên độ cực đại. 76 Đặc tính điện của IC (tiếp) Công suất tiêu thụ ở chế độ động: } Chế độ động là chế độ làm việc có tín hiệu } Là công suất tổn hao trên các phần tử trong vi mạch, nên cần càng nhỏ càng...mạch: iii iii baB baD .1 = ⊕= + Minh họa Mạch test 130 Bộ trừ đầy đủ (Full-Subtractor) Chức năng: dùng để thực hiện phép trừ giữa 2 bit bất kỳ trong phép trừ 2 số nhị phân. Sơ đồ khối: 131 Bộ trừ đầy đủ (tiếp) Bảng thật: Biểu thức đầu ra phụ thuộc đầu vào: ).(.1 iiiiii i...
mật độ tích hợp cỡ lớn: 100 ÷ 1000 cổng/chip VLSI - Very Large Scale Integration: các vi mạch có mật độ tích hợp cỡ rất lớn: 103÷106 cổng/chip ULSI - Ultra Large Scale Integration: các vi mạch có mật độ tích hợp cỡ cực kỳ lớn: > 106 cổng/chip 73 Phân loại mạch tích hợp số (tiếp) Theo bản chất linh kiện được sử dụng: } IC sử dụng Transistor lưỡng cực: RTL Resistor Transistor Logic (đầu vào mắc điện trở, đầu ra là Transistor) DTL Diode Transistor Logic (đầu vào mắc Diode, đầu ra là Transistor) TTL Transistor Transistor Logic (đầu vào mắc Transistor, đầu ra là Transistor) ECL Emitter Coupled Logic (Transistor ghép nhiều cực emitter) } IC sử dụng Transistor trường - FET (Field Effect Transistor) MOS Metal Oxide Semiconductor CMOS Complementary MOS 74 Đặc tính điện của IC Dải điện áp quy định mức logic VD: với chuẩn TTL ta có: Dải điện áp không xác định 5V 2V 0.8V 0V Vào 5V 3,5V 0,5V 0V Ra Dải điện áp không xác định 75 Đặc tính điện của IC (tiếp) Thời gian truyền: tín hiệu truyền từ đầu vào tới đầu ra của mạch tích hợp phải mất một khoảng thời gian nào đó. Thời gian đó được đánh giá qua 2 thông số: } Thời gian trễ: là thời gian trễ thông tin của đầu ra so với đầu vào } Thời gian chuyển biến: là thời gian cần thiết để chuyển biến từ mức 0 lên mức 1 và ngược lại. } Thời gian chuyển biến từ 0 đến 1 còn gọi là thời gian thiết lập sườn dương } Thời gian chuyển biến từ 1 đến 0 còn gọi là thời gian thiết lập sườn âm } Trong lý thuyết: thời gian chuyển biến bằng 0 } Trong thực tế, thời gian chuyển biến được đo bằng thời gian chuyển biến từ 10% đến 90% giá trị biên độ cực đại. 76 Đặc tính điện của IC (tiếp) Công suất tiêu thụ ở chế độ động: } Chế độ động là chế độ làm việc có tín hiệu } Là công suất tổn hao trên các phần tử trong vi mạch, nên cần càng nhỏ càng tốt. } Công suất tiêu thụ ở chế độ động phụ thuộc Tần số làm việc. Công nghệ chế tạo: công nghệ CMOS có công suất tiêu thụ thấp nhất. 77 Đặc tính cơ của IC Là đặc tính của kết cấu vỏ bọc bên ngoài. Có 2 loại thông dụng: } Vỏ tròn bằng kim loại, số chân < 10 } Vỏ dẹt bằng gốm, chất dẻo, có 3 loại IC một hàng chân SIP (Single Inline Package) hay SIPP (Single In-line Pin Package) IC có 2 hàng chân DIP (Dual Inline Package) IC chân dạng lưới PGA (Pin Grid Array): vỏ vuông, chân xung quanh 78 Đặc tính cơ của IC (tiếp) Một số dạng IC: 79 Đặc tính nhiệt của IC Mỗi một loại IC được chế tạo để sử dụng ở một điều kiện môi trường khác nhau tùy theo mục đích sử dụng nó. } IC dùng trong công nghiệp: 0°C÷70°C } IC dùng trong quân sự: -55°C ÷125°C 80 VD: Phần tử AND dùng IC 81 VD: Phần tử AND dùng IC (tiếp) 82 VD: Phần tử OR dùng IC 83 VD: Phần tử NAND dùng IC 84 VD: Phần tử NOR dùng IC 85 VD: Phần tử XOR và XNOR dùng IC 86 Các phần tử logic cơ bản AND: 74LS08 OR: 74LS32 NOT: 74LS04/05 NAND: 74LS00 NOR: 74LS02 XOR: 74LS136 NXOR: 74LS266 87 Bài tập áp dụng Biểu diễn các phần tử logic hai đầu vào AND, OR và phần tử logic một đầu vào NOT chỉ dùng phần tử NAND. 88 Điện tử số Chương 4 HỆ TỔ HỢP Bộ môn Kỹ thuật Máy tính, Khoa Công nghệ Thông tin Trường Đại học Bách Khoa Hà Nội 89 Nội dung chương 4 4.1. Khái niệm 4.2. Một số hệ tổ hợp cơ bản 90 4.1. Khái niệm Hệ tổ hợp là hệ mà tín hiệu ra chỉ phụ thuộc vào tín hiệu vào tại thời điểm hiện tại Hệ tổ hợp còn được gọi là hệ không có nhớ Hệ tổ hợp chỉ cần thực hiện bằng những phần tử logic cơ bản 91 Nội dung chương 4 4.1. Khái niệm 4.2. Một số hệ tổ hợp cơ bản 92 4.2. Một số hệ tổ hợp cơ bản 1. Bộ mã hóa 2. Bộ giải mã 3. Bộ chọn kênh 4. Bộ phân kênh 5. Các mạch số học 93 1. Bộ mã hóa Mã hóa là việc sử dụng ký hiệu để biểu diễn đặc trưng cho một đối tượng nào đó. Ký hiệu tương ứng với một đối tượng được gọi là từ mã. Thí dụ: 94 Bộ mã hóa (tiếp) Chức năng: thực hiện việc mã hóa các tín hiệu tương ứng với các đối tượng thành các từ mã nhị phân. Thí dụ: Đối tượng Từ mãBộ mã hóa tín hiệu tín hiệu Bộ mã hóa A B C D S0 S1 95 Ví dụ - Bộ mã hóa bàn phím Mã hóa bàn phím: } Mỗi phím được gán một từ mã khác nhau. } Khi một phím được nhấn, bộ mã hóa sẽ cho ra đầu ra là từ mã tương ứng đã gán cho phím đó. Hãy thiết kế bộ mã hóa cho một bàn phím gồm có 9 phím với giả thiết trong một thời điểm chỉ có duy nhất 1 phím được nhấn. 96 Bộ mã hóa bàn phím (tiếp) Sơ đồ khối: } Một bộ 9 phím, phải sử dụng 4 bit để mã hóa. } Vậy có 9 đầu vào, 4 đầu ra. Mã hóa ưu tiên: } Nếu 2 hoặc nhiều phím đồng thời được nhấn, thì bộ mã hóa chỉ coi như 1 phím được nhấn, và phím đó có mã cao nhất. P1 P2 P9 BMH bàn phím 9 phím Vcc A B C D 97 Bộ mã hóa bàn phím (tiếp) Bảng mã hóa: 98 Bộ mã hóa bàn phím (tiếp) Lập biểu thức đầu ra phụ thuộc đầu vào: } A = 1 khi P8 hoặc P9 được nhấn, tức là khi P8 = 1 hoặc P9 = 1 Vậy A = P8 + P9 } B = 1 khi P4 hoặc P5 hoặc P6 hoặc P7 được nhấn, tức là khi P4 = 1 hoặc P5 = 1 hoặc P6 = 1 hoặc P7 = 1 Vậy B = P4 + P5 + P6 + P7 } C = 1 khi P2 hoặc P3 hoặc P6 hoặc P7 được nhấn, tức là khi P2 = 1 hoặc P3 = 1 hoặc P6 = 1 hoặc P7 = 1 Vậy C = P2 + P3 + P6 + P7 } D = 1 khi P1 hoặc P3 hoặc P5 hoặc P7 hoặc P9 được nhấn, tức là khi P1 = 1 hoặc P3 = 1 hoặc P5 = 1 hoặc P7 = 1 hoặc P9 = 1 Vậy D = P1 + P3 + P5 + P7 + P9 Vẽ mạch: 99 Bài tập về nhà Tìm hiểu hoạt động của bàn phím máy tính đơn giản } TLTK: www.wikipedia.org 100 2. Bộ giải mã Chức năng: } Bộ giải mã thực hiện chức năng ngược với bộ mã hóa. } Cung cấp thông tin ở đầu ra khi đầu vào xuất hiện tổ hợp các biến nhị phân ứng với 1 hay nhiều từ mã đã được chọn. } Từ từ mã xác định được tín hiệu tương ứng với đối tượng đã mã hóa. 101 Hai trường hợp giải mã Giải mã cho 1 từ mã: } Nguyên lý: ứng với một tổ hợp cần giải mã ở đầu vào thì đầu ra bằng 1, các tổ hợp đầu vào còn lại, đầu ra bằng 0. } VD: S = 1 nếu (AB) = (10), S = 0 nếu (AB) ≠ (10) Giải mã cho toàn bộ mã: } Nguyên lý: ứng với một tổ hợp nào đó ở đầu vào thì 1 trong các đầu ra bằng 1, các đầu ra còn lại bằng 0. A B SB G M A B S0 S1 S2 S3 B G M 102 Ví dụ - Bộ giải mã BCD BCD: mã hóa số nguyên thập phân bằng nhị phân 103 Bộ giải mã BCD (tiếp) Xác định đầu vào và đầu ra: } Vào: từ mã nhị phân 4 bit (⇒ có 16 tổ hợp) } Ra: các tín hiệu tương ứng với các số nhị phân mà từ mã mã hóa Ta chỉ sử dụng 10 tổ hợp, còn 6 tổ hợp không sử dụng đến được coi là không xác định. BCD – Binary Coding Decimal 104 Bộ giải mã BCD – Bảng thật 105 Tìm biểu thức của từng đầu ra 106 Tìm biểu thức của từng đầu ra (tiếp) 107 Tìm biểu thức của từng đầu ra (tiếp) 108 Tìm biểu thức của từng đầu ra (tiếp) 109 Tìm biểu thức của từng đầu ra (tiếp) 110 Vẽ mạch 111 3. Bộ chọn kênh MultiPlexor – MUX Có nhiều đầu vào tín hiệu và 1 đầu ra Chức năng: chọn 1 tín hiệu trong nhiều tín hiệu đầu vào để đưa ra đầu ra 112 MUX 2-1 Sơ đồ khối: Tín hiệu chọn: Tín hiệu ra: E1 E0 C0 S 1000 ECECS += 113 MUX 4-1 Sơ đồ khối: Tín hiệu chọn: Tín hiệu ra: E3 E2 E1 E0 C1 C0 S 301201101001 ECCECCECCECCS +++= 114 Ví dụ - Thiết kế MUX 2-1 Bảng thật: 115 Ví dụ - Thiết kế MUX 2-1 (tiếp) Biểu thức đầu ra S: 116 Ví dụ - Thiết kế MUX 2-1 (tiếp) Sơ đồ mạch: Minh họa 117 4. Bộ phân kênh DeMultiPlexor – DeMUX Có 1 đầu vào tín hiệu và nhiều đầu ra Chức năng: đưa tín hiệu từ đầu vào tới 1 trong những đầu ra 118 DeMUX 1-2 Sơ đồ khối: Tín hiệu chọn: E C0 S0 S1 119 DeMUX 1-4 Sơ đồ khối: Tín hiệu chọn: E C1 C0 S0 S1 S2 S3 120 Ví dụ - Thiết kế DeMUX 1-2 Bảng thật: Biểu thức đầu ra: ECS ECS 01 00 = = 121 5. Các mạch số học a. Bộ cộng b. Bộ trừ c. Bộ so sánh 122 a. Bộ cộng Chức năng: thực hiện phép cộng giữa 2 số nhị phân. Bán tổng (Half-Adder): } Thực hiện phép cộng giữa 2 bit thấp nhất của phép cộng 2 số nhị phân. } Sơ đồ khối: 123 Bán tổng (tiếp) Bảng thật: Biểu thức đầu ra phụ thuộc đầu vào: Sơ đồ mạch: iii iii bar bas .1 = ⊕= + Minh họa Mạch test 124 Bộ cộng đầy đủ (Full-Adder) Chức năng: thực hiện phép cộng giữa 2 bit bất kỳ của phép cộng 2 số nhị phân. Sơ đồ khối: } ri: bit nhớ đầu vào } ri+1: bit nhớ đầu ra 125 Bộ cộng đầy đủ (tiếp) Bảng thật: Biểu thức đầu ra phụ thuộc đầu vào: )(.1 iiiiii iiii barbar rbas ++= ⊕⊕= + 126 Bộ cộng đầy đủ (tiếp) Sơ đồ mạch: Minh họa Mạch test 127 Bộ cộng nhiều bit Đây là bộ cộng 2 số nhị phân n bit, kết quả nhận được là 1 số nguyên n+1 bit. Sơ đồ: Minh họa Mạch test 128 b. Bộ trừ Chức năng: thực hiện phép trừ giữa 2 số nhị phân. Bán hiệu (Half-Subtractor): } Dùng để thực hiện phép trừ giữa 2 bit thấp nhất trong phép trừ giữa 2 số nhị phân } Sơ đồ khối: Di: hiệu Bi+1: bit mượn 129 Bán hiệu (tiếp) Bảng thật: Biểu thức đầu ra phụ thuộc đầu vào: Sơ đồ mạch: iii iii baB baD .1 = ⊕= + Minh họa Mạch test 130 Bộ trừ đầy đủ (Full-Subtractor) Chức năng: dùng để thực hiện phép trừ giữa 2 bit bất kỳ trong phép trừ 2 số nhị phân. Sơ đồ khối: 131 Bộ trừ đầy đủ (tiếp) Bảng thật: Biểu thức đầu ra phụ thuộc đầu vào: ).(.1 iiiiii iiii baBbaB BbaD ⊕+= ⊕⊕= + 132 Bộ trừ đầy đủ (tiếp) Sơ đồ mạch: Minh họa Mạch test 133 c. Bộ so sánh Dùng để so sánh 2 số nhị phân Có 2 kiểu so sánh: } So sánh đơn giản: Kết quả so sánh: bằng nhau, khác nhau } So sánh đầy đủ: Kết quả so sánh: lớn hơn, nhỏ hơn, bằng nhau Có 2 loại bộ so sánh: } Bộ so sánh đơn giản } Bộ so sánh đầy đủ 134 Bộ so sánh đơn giản Giả sử cần xây dựng bộ so sánh đơn giản 2 số A và B: A a3 a2 a1 a0 B b3 b2 b1 b0 Đầu ra S S = 1 A = B S = 0 A ≠ B 135 Bộ so sánh đơn giản (tiếp) Ta có: Suy ra: ⎪⎪⎩ ⎪⎪⎨ ⎧ =⊕ =⊕ =⊕ =⊕ ↔ ⎪⎪⎩ ⎪⎪⎨ ⎧ =⊕ =⊕ =⊕ =⊕ ↔ ⎪⎪⎩ ⎪⎪⎨ ⎧ = = = = ↔= 1 1 1 1 0 0 0 0 00 11 22 33 00 11 22 33 00 11 22 33 ba ba ba ba ba ba ba ba ba ba ba ba BA 00112233 ... babababaS ⊕⊕⊕⊕= 136 Bộ so sánh đơn giản (tiếp) Sơ đồ mạch: 137 Bộ so sánh đầy đủ Bộ so sánh 2 bit đầy đủ: } Đầu vào: 2 bit cần so sánh ai và bi } Đầu ra: 3 tín hiệu để báo kết quả lớn hơn, nhỏ hơn, bằng nhau của 2 bit ai > bi Gi = 1 còn Ei, Li = 0 ai Li = 1 còn Ei, Gi = 0 ai = bi Ei = 1 còn Gi, Li = 0 } Sơ đồ khối: 138 Bộ so sánh 2 bit đầy đủ (tiếp) } Bảng thật: } Biểu diễn đầu ra theo đầu vào: } Sơ đồ mạch: iii iii iii baE baL baG ⊕= = = . . Minh họa 139 Bộ so sánh đầy đủ 2 số nhị phân Cấu tạo: gồm các bộ so sánh 2 bit Có tín hiệu CS (Chip Select) } CS = 0, tất cả các đầu ra = 0 (không so sánh) } CS = 1, hoạt động bình thường Biểu diễn các đầu ra của bộ so sánh 2 bit theo đầu vào: )(. .. .. iii iii iii baCSE baCSL baCSG ⊕= = = Minh họa Mạch test 140 VD: Bộ so sánh 2 số nhị phân 3 bit Sơ đồ mạch bộ so sánh 2 số nhị phân 3 bit: } A = a2a1a0 } B = b2b1b0 Mạch test Minh họa 141 Bài tập chương 4 Bài 1: Tổng hợp bộ chọn kênh 4-1. Bài 2: Thiết kế bộ trừ/nhân 2 số 2 bit. Bài 3: Tổng hợp bộ chọn kênh 2-1 chỉ dùng NAND. Bài 4: Tổng hợp mạch tổ hợp thực hiện phép toán sau : M = N + 3, biết rằng N là số 4 bit mã BCD còn M là số 4 bit. 142 Điện tử số Chương 5 HỆ DÃY Bộ môn Kỹ thuật Máy tính, Khoa Công nghệ Thông tin Trường Đại học Bách Khoa Hà Nội 143 Nội dung chương 5 5.1. Khái niệm 5.2. Mô hình của hệ dãy 5.3. Các Trigger 5.4. Một số ứng dụng của hệ dãy 144 5.1. Khái niệm Hệ dãy là hệ mà tín hiệu ra không chỉ phụ thuộc vào tín hiệu vào tại thời điểm hiện tại mà còn phụ thuộc vào quá khứ của tín hiệu vào. Hệ dãy còn được gọi là hệ có nhớ. Để thực hiện được hệ dãy, nhất thiết phải có phần tử nhớ. Ngoài ra còn có thể có các phần tử logic cơ bản. 145 Phân loại hệ dãy Hệ dãy đồng bộ: khi làm việc cần có 1 tín hiệu đồng bộ để giữ nhịp cho toàn bộ hệ hoạt động. Hệ dãy không đồng bộ: không cần tín hiệu này để giữ nhịp chung cho toàn bộ hệ hoạt động. Hệ dãy đồng bộ nhanh hơn hệ dãy không đồng bộ tuy nhiên lại có thiết kế phức tạp hơn. 146 Nội dung chương 5 5.1. Khái niệm 5.2. Mô hình của hệ dãy 5.3. Các Trigger 5.4. Một số ứng dụng của hệ dãy 147 Mô hình của hệ dãy Mô hình của hệ dãy được dùng để mô tả hệ dãy thông qua tín hiệu vào, tín hiệu ra và trạng thái của hệ mà không quan tâm đến cấu trúc bên trong của hệ. 148 Mô hình của hệ dãy (tiếp) Có 2 loại mô hình: } Mealy } Moore Hai loại mô hình trên có thể chuyển đổi qua lại cho nhau. 149 a. Mô hình Mealy Mô hình Mealy mô tả hệ dãy thông qua 5 tham số: } X = {x1, x2, ..., xn} } Y = {y1, y2, ..., yl} } S = {s1, s2, ..., sm} } FS(S, X) } FY(S, X) 150 Mô hình Mealy (tiếp) Giải thích các kí hiệu: } X là tập hợp hữu hạn n tín hiệu đầu vào } Y là tập hợp hữu hạn l tín hiệu đầu ra } S tập hợp hữu hạn m trạng thái trong của hệ } FS là hàm biến đổi trạng thái. Đối với mô hình kiểu Mealy thì FS phụ thuộc vào S và X → FS = FS(S, X) } FY là hàm tính trạng thái đầu ra: FY = FY(S, X) 151 b. Mô hình Moore Mô hình Moore giống như mô hình Mealy, nhưng khác ở chỗ là FY chỉ phụ thuộc vào S: FY = FY(S) 152 Bảng chuyển trạng thái Mô hình Mealy: 153 Bảng chuyển trạng thái (tiếp) Mô hình Moore: 154 Ví dụ về mô hình hệ dãy Sử dụng mô hình Mealy và Moore để mô tả hệ dãy thực hiện phép cộng. Ví dụ: 155 Ví dụ: Mô hình Mealy X = {00, 01, 10, 11} - do có 2 đầu vào Y = {0, 1} - do có 1 đầu ra S = {s0, s1} - s0: trạng thái không nhớ - s1: trạng thái có nhớ Hàm trạng thái FS(S, X): FS(s0, 00) = s0 FS(s0, 01) = s0 FS(s0, 11) = s1 FS(s0, 10) = s0 FS(s1, 00) = s0 FS(s1, 10) = s1 FS(s1, 01) = s1 FS(s1, 11) = s1 156 Ví dụ: Mô hình Mealy (tiếp) Hàm ra FY(S, X): FY(s0, 00) = 0 FY(s0, 11) = 0 FY(s0, 01) = 1 FY(s0, 10) = 1 FY(s1, 00) = 1 FY(s1, 10) = 0 FY(s1, 11) = 1 FY(s1, 01) = 0 157 Bảng chuyển trạng thái 158 Đồ hình chuyển trạng thái 159 Ví dụ: Mô hình Moore X = {00, 01, 10, 11} - do có 2 đầu vào Y = {0, 1} - do có 1 đầu ra S = {s00, s01, s10, s11} - sij: i = 0 là không nhớ i = 1 là có nhớ j = tín hiệu ra 160 Ví dụ: Mô hình Moore (tiếp) Hàm trạng thái FS(S, X): FS(s00, 00) = s00 FS(s00, 10) = s01 FS(s00, 01) = s01 FS(s00, 11) = s10 FS(s01, 00) = s00 FS(s01, 10) = s01 FS(s01, 01) = s01 FS(s01, 11) = s10 FS(s10, 00) = s01 FS(s10, 10) = s10 FS(s10, 01) = s10 FS(s10, 11) = s11 FS(s11, 00) = s01 FS(s11, 01) = s10 FS(s11, 11) = s11 FS(s11, 10) = s10 Hàm ra FY(S): FY(s00) = 0 FY(s01) = 1 FY(s10) = 0 FY(s11) = 1 161 Bảng chuyển trạng thái 162 Đồ hình chuyển trạng thái 163 Nội dung chương 5 5.1. Khái niệm 5.2. Mô hình của hệ dãy 5.3. Các Trigger 5.4. Một số ứng dụng của hệ dãy 164 Trigger Phần tử cơ bản của hệ dãy chính là các phần tử nhớ hay còn gọi là các trigger Đầu ra của trigger chính là trạng thái của nó Một trigger có thể làm việc theo 2 kiểu: } Trigger không đồng bộ: đầu ra của trigger thay đổi chỉ phụ thuộc vào tín hiệu đầu vào } Trigger đồng bộ: đầu ra của trigger thay đổi phụ thuộc vào tín hiệu vào và tín hiệu đồng bộ 165 Các kiểu đồng bộ Đồng bộ theo mức: } Mức cao: Khi tín hiệu đồng bộ có giá trị logic bằng 0 thì hệ nghỉ (giữ nguyên trạng thái) Khi tín hiệu đồng bộ có giá trị logic bằng 1 thì hệ làm việc bình thường. } Mức thấp: Khi tín hiệu đồng bộ có giá trị logic bằng 1 thì hệ nghỉ (giữ nguyên trạng thái) Khi tín hiệu đồng bộ có giá trị logic bằng 0 thì hệ làm việc bình thường. 166 Các kiểu đồng bộ (tiếp) Đồng bộ theo sườn: } Sườn dương: Khi tín hiệu đồng bộ xuất hiện sườn dương (sườn đi lên, từ 0 → 1) thì hệ làm việc bình thường Trong các trường hợp còn lại, hệ nghỉ (giữ nguyên trạng thái). } Sườn âm: Khi tín hiệu đồng bộ xuất hiện sườn âm (sườn đi xuống, từ 1 → 0), hệ làm việc bình thường Trong các trường hợp còn lại, hệ nghỉ (giữ nguyên trạng thái). 167 Các kiểu đồng bộ (tiếp) Đồng bộ kiểu xung: } Khi có xung thì hệ làm việc bình thường } Khi không có xung thì hệ nghỉ (giữ nguyên trạng thái). 168 Các loại Trigger Có 4 loại Trigger: } RS Reset - Set Xóa - Thiết lập } D Delay Trễ } JK Jordan và Kelly Tên 2 nhà phát minh } T Toggle Bập bênh, bật tắt 169 a. Trigger RS Sơ đồ khối: Trigger RS hoạt động được ở cả 2 chế độ đồng bộ và không đồng bộ CLK CLK Đồng bộ sườn âm 170 Bảng chuyển trạng thái của RS RqSQ += 171 Ví dụ Cho Trigger RS đồng bộ mức cao và đồ thị các tín hiệu R, S như hình vẽ. Hãy vẽ đồ thị tín hiệu ra Q. 172 Ví dụ (tiếp) 173 b. Trigger D Trigger D có 1 đầu vào là D và hoạt động ở 2 chế độ đồng bộ và không đồng bộ. Ta chỉ xét trigger D hoạt động ở chế độ đồng bộ. 174 Trigger D đồng bộ Trigger D đồng bộ theo mức gọi là chốt D (Latch) Trigger D đồng bộ theo sườn được gọi là xúc phát sườn (Edge trigged) 175 Bảng chuyển trạng thái của D 176 Ví dụ 1 Cho chốt D kích hoạt mức cao. Hãy vẽ tín hiệu ra Q dóng trên cùng trục thời gian với tín hiệu vào D. 177 Ví dụ 1 (tiếp) 178 Ví dụ 2 Cho trigger D xúc phát sườn dương. Hãy vẽ tín hiệu ra Q dóng trên cùng trục thời gian với tín hiệu vào D. 179 Ví dụ 2 (tiếp) 180 c. Trigger JK Trigger JK chỉ hoạt động ở chế độ đồng bộ Sơ đồ khối: 181 Bảng chuyển trạng thái của JK KqJqQ += J ~ S K ~ R 182 d. Trigger T Trigger T chỉ hoạt động ở chế độ đồng bộ Sơ đồ khối: 183 Bảng chuyển trạng thái của T TqTqTqQ ⊕=+= 184 Nội dung chương 5 5.1. Khái niệm 5.2. Mô hình của hệ dãy 5.3. Các Trigger 5.4. Một số ứng dụng của hệ dãy 185 1. Bộ đếm và chia tần số Bộ đếm được dùng để đếm xung Bộ đếm được gọi là module n nếu nó có thể đếm được n xung: từ 0 đến n-1 Có 2 loại bộ đếm: } Bộ đếm không đồng bộ: không đồng thời đưa tín hiệu đếm vào các đầu vào của các trigger } Bộ đếm đồng bộ: có xung đếm đồng thời là xung đồng hồ clock đưa vào tất cả các trigger của bộ đếm 186 Bộ đếm không đồng bộ module 16 Đếm từ 0 đến 15 và có 16 trạng thái Mã hóa thành 4 bit A,B,C,D tương ứng với q4,q3,q2,q1 Cần dùng 4 trigger (giả sử dùng trigger JK) 1 1 1 1 1 1 1 1 187 Bộ đếm không đồng bộ module 16 Bảng đếm xung: 188 Bộ đếm không đồng bộ module 16 Biểu đồ thời gian: NX: Bộ đếm này đồng thời cũng là bộ chia tần số 189 Bộ đếm không đồng bộ module 10 Có 10 trạng thái⇒ cần dùng 4 Trigger Giả sử dùng Trigger JK có đầu vào CLR (CLEAR: xóa) tích cực ở mức thấp } Nếu CLR = 0 thì q = 0 Cứ mỗi khi đếm đến xung thứ 10 thì tất cả các q bị xóa về 0 Sơ đồ: (các J=K=1) 190 Bộ đếm đồng bộ module 8 Có 8 trạng thái⇒ cần dùng 3 Trigger Giả sử dùng các Trigger JK Bảng đếm xung: 191 Bộ đếm đồng bộ module 8 (tiếp) J K CLK Q1 J K CLK Q2 J K CLK Q3 CLOCK 1 192 Bộ đếm lùi không đồng bộ module 8 Giả sử dùng Trigger JK có đầu vào PR (PRESET: thiết lập trước) tích cực ở mức thấp } Nếu PR = 0 thì q = 1 Đầu tiên cho PR = 0 thì q1q2q3 = 111 Sau đó cho PR = 1, hệ hoạt động bình thường xung q3 q2 q1 0 1 2 3 4 5 6 7 8 1 1 1 1 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 Số đếm 7 6 5 4 3 2 1 0 7 193 Bộ đếm lùi không đồng bộ module 8 194 2. Thanh ghi Thanh ghi có cấu tạo gồm các trigger nối với nhau Chức năng: } Để lưu trữ tạm thời thông tin } Dịch chuyển thông tin Lưu ý: cả thanh ghi và bộ nhớ đều dùng để lưu trữ thông tin, nhưng thanh ghi có chức năng dịch chuyển thông tin. Do đó, thanh ghi có thể sử dụng làm bộ nhớ, nhưng bộ nhớ không thể làm được thanh ghi. 195 Phân loại Vào nối tiếp ra nối tiếp Vào nối tiếp ra song song Vào song song ra nối tiếp Vào song song ra song song 0 1 0 1 0 0 11 0 1 0 1 0 0 11 0 1 0 1 0 0 11 0 1 0 1 0 0 11 196 Ví dụ Thanh ghi 4 bit vào nối tiếp ra song song dùng Trigger D 197 Ví dụ (tiếp) Bảng số liệu khảo sát: 198 KS28: } User: k28cntt } Pass: “tap the” SPKT Tin K50 } Lớp phó: Trần Thị Dung 0976324219.
File đính kèm:
- bai_giang_dien_tu_so.pdf