Bài giảng Điện tử ứng dụng - Nguyễn Hoàng Mai
Tóm tắt Bài giảng Điện tử ứng dụng - Nguyễn Hoàng Mai: ...cæía VG (do vuìng tuyãún tênh nhoí nãn duìng kiãøu ON/OFF). Nãúu âiãûn aïp âæa vaìo cæûc cæía so våïi Emitå nhoí hån âiãûn aïp ngæåîng Vth thç khäng taûo ra âæåüc vuìng tiãúp giaïp ngæåüc nhæ MOSFET. Cho nãn thiãút bë åí traûng thaïi OFF trong træåìng håüp naìy mäüt âiãûn aïp phán cæûc t... gây méo tín hiệu • - Không tạo phổ đồng loại Khuếch đại Uvào Ura Khuếch đại dùng sơ đồ EC và sơ đồ tương đương • Sơ đồ nguyên lí mạch khuếch đại EC. Tín hiệu ra ngược pha với tín hiệu vào Ube0 Uce0 Uv Ue0 Ut Ub0 Uc0 I1 Ib0 I2 Ic0 Ie0 Iv Rcc Khuếch đại dùng sơ đồ EC và sơ đồ tươ...a, tín hiệu ra có thể cùng pha hay ngược pha, hay lệch một góc pha bất kì so với tín hiệu vào Đặt A(ω)=K )( )()( )( 1 )( ωϕωϕωϕ ωϕ ω k fh h j hkj f j h j h k eKKeKeK eKjW =+= Nhận xét: •Hệ số khuếch đại của mạch có phản hồi là một trị phức •Góc lệch pha phụ thuộc cấu trúc mạc...
) exp(-ax) • P(E,x) = Pt(E) [1-R(E) ]exp(-a(E)x) • Hệ số phản xạ R(E) phụ thuộc vào bản chất bán dãn và điều kiện bề mặt, giá trị của nó chủ yếu phụ thuộc góc đến của tia tới, sự phản xạ nhỏ nhất khi tia tới vuông góc bề mặt bán dẫn. • R(E) = [(n-1)2 + (ga/4π)2]/[(n+1) 2 + (ga/4π)2] • với n = n2/n1 ; n1 là chiết suất không khí, n2 là chiết suất chất bán dẫn. a là hệ số hấp thụ, g là bước sóng tia tới. Đặc trưng phổ • Một loại vật liệu bán dẫn chỉ có thể hấp thụ hoặc phát xạ một số tia sáng xác định, được gọi là đặc trưng phổ. 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Vùng cực tím Vùng nhìn thấy Vùng hồng ngoại Chương 2-Khuếch đại dùng BJT – Khái niệm • Khuếch đại là quá trình biến đổi một công suất tín hiệu vào nhỏ thành công suất tín hiệu ra lớn hơn. • Yêu cầu: • - Biên độ tín hiệu ra phải lớn hơn tín hiệu vào • - Không gây méo tín hiệu • - Không tạo phổ đồng loại Khuếch đại Uvào Ura Khuếch đại dùng sơ đồ EC và sơ đồ tương đương • Sơ đồ nguyên lí mạch khuếch đại EC. Tín hiệu ra ngược pha với tín hiệu vào Ube0 Uce0 Uv Ue0 Ut Ub0 Uc0 I1 Ib0 I2 Ic0 Ie0 Iv Rcc Khuếch đại dùng sơ đồ EC và sơ đồ tương đương • Lấy đặc tính vào và ra để xác định phân cực Q: điểm công tác Uce Q B A Ic Uce Ic Ic0 Uce0 Ib0 Ib2 Ib1 Ib Ube Ube Ube0 Ib0 Ib2 Ib1 Ib M N oo Uce0 Vc e(t) Khuếch đại dùng sơ đồ EC và sơ đồ tương đương • Tính phân cực một chiều: • Xác định dòng Ib0 (Ube0)(chọn trước). • Từ đặc tính vào xác định được Ube0 (Ibo) • Xác định Ube0 theo biên độ tín hiệu e(t) của tín hiệu vào, sao cho không bị méo • Xác định trước nguồn Vc, từ đó xác định đường tải AB. • Xác định Ic0 theo đặc tính ra • Xác định Uce0 • Chọn trước một giá trị của Re hoặc Rc. Thông thường chọn trước RE với giá trị từ vài ôm đến vài trăm ôm Tính phân cực một chiều • Qui ước thống nhất: chọn I2 bằng 10 lần Ib0. 02 0 1 2 0 2 00002 0 00 00 0 0 )105( )1( b bcb ebebb c ecec cebe b c II UVR I UR UUUII I UUVRRIU I I + −=→= +=→÷= −−=→+= = β β Tính phân cực một chiều theo kinh nghiệm • Nếu không có đặc tính V-A của BJT, việc tính toán được chọn theo kinh nghiệm: • Với BJT loại Si chọn Ube0=0,6vôn, loại Ge chọn Ube0=0,2 vôn • Dòng Ic0 được chọn theo dòng cực đại cho phép của BJT. Chọn bằng một nữa giá trị cực đại. • Điện áp Uce0 được chọn bằng một nữa đến hai phần ba giá trị nguồn Vc. • Dòng Ib0=Ic0/β • Chọn một trong hai điện trở Rc hoặc Re. Tính phân cực một chiều theo kinh nghiệm 0 00 0 0 1 0 00 2 00 11 ; 10 )1( c ecec c b bc b bee ebe I UUVR I UVR I UUR RIU −−= −=+= += β Sơ đồ xoay chiều tương đương βIb Ic Ib Ie R1//R2 Iv Uv Ut It Ic B E C Tính toán xoay chiều khuếch đại • Bộ tham số tính toán: • Tổng trở ngõ vào Rv • Tổng trở ngõ ra Rr • Hệ số khuếch đại dòng điện Ki • Hệ số khuếch đại điện áp Ku • Hệ số khuếch đại công suất Kp Mạch khuếch đại BJT K Uv = e(t) Iv Ur=U2 Mô hình mạch khuếch đại hai cửa Rv Rr U2 E(t) [ ] [ ] ceccr trcebebcb vebv bebebbbv RRR UURIRIRI rRRRRRRR IRRRIRIU // )1( ;////)1(//// )1()1( 2121 =⇒ ===++ =++=⇒ ++=++= βββ β ββ Tính toán các hệ số khuếch đại )( )//( )( )//( )//( )()(; )( nv tr v v v v bnv trb u trbtttr b v v vvbvvv vnv t u RR RR r R r R IRR RRIK RRIIRUU I R rIrIURI IRRte te UK +=+=⇒ ⇒=== =⇒== +== ββ β Tính toán các hệ số khuếch đại • Sinh viên tự đọc khuếch đại C-C và B-C ở nhà ( ) iu v tt vao ra p t tccce t tr v v i t trb t trbttt v t i KK I I te U P PK R RRR R RR r RK R RRII RRIURI I IK ===⇒ ==⇒ = ==⇒= )( ////)//( )//( )//(; ββ β β Khuếch đại B-C và sơ đồ tương đương UBE0 UCE0 Ur IE0 IB0 IC0 Un Khuếch đại B-C và sơ đồ tương đương Iv Uv Ie Ib Ic It IRc Ur Mạch vào Mạch ra =uK Sơ đồ tương đương xoay chiều của khuếch đại B-C ( )[ ] )(// 1 Bccr bev rRR rrR = −+= α = t tc i R RRK //α vn tc u Rr RRK += //α ( ) t tc v t tc ct tttcc v t i R RRI R RRII RIRRImà I IK //// //. α== == * Tổng trở vào: tổng trở vào được tính theo mạch vòng E-B. dòng ra Ic=αIe Uv=RvIe = [re +(1-α)rb]; Uc = (Rc//rc(B))Ic * Hệ số khuếch đại dòng điện * Hệ số khuếch đại điện áp ( ) ( )vn t i vnv tt n t u Rr RK RrI RI U UK +=+== Tính toán tham số mạch xoay chiều mạch B-C Iv It Ie Ic Ut Uv R1 R2 Phân cực DC đợc tính toán tương tự như mạch E-C và B-C. riêng điện trở định thiên RE được xác định theo hệ số phản hồi âm dòng điện cần thiết. Các tính tóan dựa trên đặc tính V-A vào và ra Độ ổn định của mạch có thể tính tóan dựa trên tiêu chuẩn Routh hoặc các tiêu chuẩn tần số •Mạch khuếch đại C-C có hệ số phản hồi âm lớn nên dải tần công tác rộng. •Đặc tính tần số biên độ Logarit có độ dốc cao tần là -20dB/dec Khuếch đại C-C và sơ đồ tương đương Iv It Ie Ib Ic Ie0 UV Ur Tính tham số xoay chiều: * Dòng điện vào được tính là dòng Ib tại cực B của BJT ( )( )[ ] 21 //////1 RRRRrrR teebv +++= β Nếu điện trở vào được chọn lớn ( )( )[ ] )(21 ////////1 Ecteebv rRRRRrrR +++= β Sơ đồ tương đương xoay chiều của khuếch đại C-C Điện trở ra của tầng C-C ( ) + ++= β1 //// // 21)( RRrr rRR bEceer ( ) + ++= β1 //// 21 RRrrRR beer ( )( )[ ] ( ) ( ) ( ) ( ) t te v v v t i tebteett teebbvbvv R RR r R I IK RRIRRIRI RRrrIrIRI //1 //1// //1 β β β +== +== +++== Với rc(E) lớn, ta có thể viết: Hệ số khuếch đại dòng điện Hệ số khuếch đại điện áp ( ) ( )vn t i nvv tt n t u RR RK RRI RI U UK +=+== Ghép tầng trong bộ khuếch đại dùng điện dung • Thông thường, một mạch khuếch đại chỉ có hệ số khuếch dại cỡ vài chục lần. Muốn có hệ số khuếch đại lớn phải ghép nhiều mạch với nhau, gọi là ghép tầng. Tụ ghép tầng Ghép tầng trong bộ khuếch đại dùng biến áp Khuếch đại công suất • - Các tầng khuếch đại công suất có dòng điện và điện áp cao • - Phân cực một chiều sẽ gây tổn thất công suất một chiều trong mạch khuếch đại • - Cần hạn chế tổn hao này. Ube0 Uce0 Uv Ue0 Ut Ic0 Ie0 Tổn hao công suất trong mạch EC • Tổn hao chính là dòng phân cực Ic0 và điện áp Uce0 • P0 = Uce0Ic0. Khi làm việc trong chế độ khuếch đại cả hai nữa chu kì. • Vấn đề làm mát cho BJT, tăng công suất nguồn cung cấp. • Chế độ khuếch đại cả hai nửa chu kì gọi là chế độ A Q B A Ic Uce Ic Ic0 Uce0 Ib0 Ib2 Ib1 Ib Ube Ube Ube0 Ib0 Ib2 Ib1 Ib M N oo Khuếch đại công suất chế độ B (một nữa chu kì) • Để khuếch đại cả hai nửa chu kì cần có hai mạch khuếch đại riêng • Loại chế độ này sẽ không gây tổn hao một chiều Ib Ube Ic Uce e(t) Ibmax Ibmax Ic0=0Ib0=0 Nguyên lí mạch khuếch đại ghép đẩy kéo • Điện áp tại chân C và E của T1 luôn bằng nhau và ngược pha T1 Khuếch đại Darlington • Hệ số khuếch đại bằng tích hai hệ số khuếch đại tương ứng của BJT • Mạch này thường dùng ở tầng khuếch đại cuối cùng. • Nhược điểm là hay bị dao động tự kích. T1 T2 Ib1 Ic=Ic1+Ic2Rc Phản hồi trong bộ khuếch đại • Phản hồi là lấy một phần tín hiệu ra đem quay trở lại trộn với tín hiệu đầu vào để cải thiện chất lượng bộ khuếch đại. • Theo tín hiệu có phản hồi điện áp và dòng điện • Theo hình thức phản hồi có phản hồi âm (ngược pha) và dương (cùng pha) • Theo cấu trúc có phản hồi song song và phản hồi nối tiếp. • Tác dụng làm tăng tổng trở vào và giảm tổng trở ra • Tăng độ rộng dải tần công tác • Ổn định hoá bộ khuếch đại • Nâng cao độ chống nhiễu và giảm khả năng dao động tự kích. Kh Kp Uv Ur ph h ph KK KK ±= 1 e z (+) dương âm Trong trường hợp tổng quát, một bộ khuếch đại được coi như một mạch điện với các phần tử tạo nên một quan hệ vào-ra tổng quát: xb dt dxb dt xdb dt xdbya dt dya dt yda dt yda mmm m m m nnn n n n ++++=++++ −− − −− − 11 1 1011 1 10 ...... Với điều kiện đầu không nguồn ∑ ∑ = − = − == n i in i m k km k h pa pb pX pYpW 0 0 )( )()( Wh(p) Wf(p) x y -z ∑ ∑ = − = − == f f f f n h hn h m l lm l f pg pc pY pZpW 0 0 )( )()( Hàm truyền của hệ kín )()(1 )()( pWpW pWpW fh h k += Trong miền Laplace: p = α + jω Trong miền tần số: p = j ω )()()()( )()(1 )()( ωϕωωωωω ωω jkk fh h k eAjQPjWjW jWjW =+=+= )( )(arctan)(; )( )( )( )()(;)()( )()( ω ωωϕω ωω ωωωω ωϕωϕ k k jj P Q X Y A eXjXeYjY == == Với hàm ảnh Furie của y(t) và x(t), ta có Tùy thuộc góc lệch pha, tín hiệu ra có thể cùng pha hay ngược pha, hay lệch một góc pha bất kì so với tín hiệu vào Đặt A(ω)=K )( )()( )( 1 )( ωϕωϕωϕ ωϕ ω k fh h j hkj f j h j h k eKKeKeK eKjW =+= Nhận xét: •Hệ số khuếch đại của mạch có phản hồi là một trị phức •Góc lệch pha phụ thuộc cấu trúc mạch phản hồi •Hệ số khuếch đại làm việc phụ thuộc tần số tín hiệu •Mạch phản hồi làm việc ổn định nếu góc lệch pha không làm đảo dấu tín hiệu phản hồi theo qui ước. •Quá trình quá độ phụ thuộc giá trị Kh, góc pha ϕ KHUẾCH ĐẠI TÍN HIỆU BiẾN THIÊN CHẬM •Đặc điểm: -Tín hiệu biến thiên rất chậm -Không nối tầng bằng tụ hay biến áp -Dễ bị trôi do nguồn và nhiệt độ -Dễ mất cân bằng điện áp trên tải Ghép tầng trong khuếch đại một chiều Thường ghép tầng trực tiếp hay ghép quang Tín hiệu đầu vào bé, tổng trở tín hiệu biến thiên rộng Tính toán phân cực phức tạp KHUẾCH ĐẠI VI SAI Không thể hiện phân cực của BJT cho khỏi rườm rà Ur +Vc Uv1 Uv2 Io Ie1 Ie2 R R Ie1+Ie2=Io=hằng số T1 T2 + - KHUẾCH ĐẠI VI SAI-cùng pha Ur +Vc Uv1 Uv2 Io Ie1 Ie2 R R I~e1+I~e2=0 T1 T2 khuếch đại vi sai - ngược pha Ur +Vc Uv1 Uv2 Io Ie1 Ie2 R R T1 T2 e1 e2 khuếch đại vi sai – trôi nhiệt Ur +Vc Uv1 Uv2 Io Ie1 Ie2 R R I0e1+I0e2=0 T1 T2 khuếch đại vi sai – trôi nguồn Ur +Vc Uv1 Uv2 Io Ie1 Ie2 R R I0e1+I0e2=0 T1 T2 Khuếch đại vi sai không cân bằng Ur +Vc Uv1 Uv2 Io Ie1 Ie2 R1 R1 Ie1+Ie2=Io=hằng số T1 T2 R2 R2 Offset null (có trường hợp nối GND) Đọc giá trị điện trở • 0 Đen 7 Tím • 1 Nâu 8 Xám • 2 Đỏ 9 Trắng • 3 Cam • 4 Vàng • 5 Xanh • 6 Lơ (blue) Vạch chuẩn Số thứ nhất (số) Số thứ hai (số) Số thứ ba (số chữ số 0) Sai số 260000 ±2% Phản hồi áp và dòng Kp Chương 3- KHUẾCH ĐẠI THUẬT TOÁN- OA Operational Amplifier +Vc -Vc Vi- Vi+ i + i- V0 Rv = ∞; Rr = 0; i- = i+ = 0; Kh = ∞; V0 = Kh∆Vi IC – Integrated Circuit ∆Vi Đặc tính vào ra của OA • Khi Vi+>Vi-Î Vo = +Vc (Vi- = 0) • Khi Vi+<Vi-Î Vo = -Vc (Vi- = 0) • Do OA thực tế không thể có Kh = ∞ mà chỉ 104 -:-106 nên tồn tại ∆Vi cỡ vài mV được khuếch đại tuyến tính • Thực tế người ta không dùng vùng khuếch đại này Vi Vo Vi+Vi- ∆Vi -Vc +Vc Các chế độ làm việc của OA A. Chế độ tuyến tính (khuếch đại): cần có phản hồi âm sâu để giảm hệ số khuếch đại. Nối mạch phản hồi đầu ra về chân đảo Luôn có: Vi+ = Vi- i+ = i- = 0 B. Chế độ xung (on – off) (Không có phản hồi) Vi+ > Vi- Î Vo = +Vc Vi+ < Vi-Î Vo = -Vc C. Chế độ tự dao động:sóng sin, tam giác, răng cưa, chữ nhật cần có phản hồi dương. Nối mạch phản hồi từ đầu ra về chân không đảo. Các ứng dụng tuyến tính của OA Vi+ = Vi- = 0 Mạch khuếch đại đảo: Ur = -(R2/R1)U1 Vi- Vi+ i+ i- Ur R1 R2 U1 I1 I2 Khuếch đại không đảo • Vi+ = Vi- =U1 • Điện áp ra: Ur = (1+R2/R1)U1 Vi- Vi+i+ i- Ur R1 R2 U1 I1 I2 Mạch cộng đảo • Vi+ = Vi- = 0 • Ur = -(U1 + U2) Vi- Vi+ i+ i- Ur R R U1 U2 R I1 I2 I3 Mạch cộng không đảo Vi+ = Vi- = Ur/2; Ur = U1 + U2 Vi- Vi+ i+ i- Ur R R U1 U2 R R I1 I2 Mạch trừ • Vi+ = Vi- = U2/2; Ur = U2 – U1 • U2 = Ur + U1 ≡ α2 + α1= α = 180 dộ Vi- Vi+ i+ i- Ur R R U1 U2 R R I1 I3 +5V +5v -5V Mạch vi phân đảo • Vi+ = Vi- = 0 • Ur = - RC(dU1/dt) = -T.dU1/dt Vi- Vi+ i+ i- Ur R U1 C I I2 Mạch tích phân đảo • Vi+ = Vi- = 0 Vi- Vi+ i+ i- Ur R U1 C ∫−= dtURCUr 1 1 Mạch lặp điện áp • Ur = U1; dùng tạo trở kháng nguồn thấp Vi- Vi+i+ i- Ur R2 U1 Mạch tích phân không đảo Vi- Vi+i+ i- Ur R U1 C R R R ∫= dtURCUr 1 2 I1 I2 I3 Mạch PI (Poprotional Integrated) • Tỉ lệ Tích phân Vi- Vi+ i+ i- Ur R1 U1 CR2 I1 I2 ∫−−= dtUCRUR RUr 11 11 1 2 Mạch PID – Poprotional Integrated Derivative • Tỉ lệ Tích phân Vi phân Vi- Vi+ i+ i- Ur R1 U1 C2R2 C1 I1 I2 I3 dt dUTdtU T kU d i 1 11 1 ++ ∫ Quan hệ I và U trong tiếp giáp p-n trong vùng điện áp thấp và dòng nhỏ • Trong Diode: IA = k.eUak • Uak = lnIA • Trong Tranzitor Ic = k.eUce • Uce = lnIc =1 =1 Mạch lấy logarit Ia = I1 = U1/R Æ -Ur = Uak = ln(U1/R) Vậy điện áp ra tỉ lệ với logarit điện áp vào. Vi- Vi+ i+ i- Ur R U1 I1 Ia Uak Mạch lấy logarit bằng BJT Vi- Vi+ i+ i- Ur R U1 Mạch lấy hàm mũ Ia = I = -Ur/R = keUak Ur = -kR.eU1 Vậy điện áp ra tỉ lệ với hàm mũ e của điện áp vào Vi- Vi+ i+ i- Ur R U1 Ia I Mạch tạo tín hiệu hàm mũ bằng BJT Vi- Vi+ i+ i- Ur R U1 Mạch nhân hai điện áp • Ur = U1xU2 • lnUr = ln(U1.U2) = lnU1 + lnU2 • Ur = e(lnU1 + lnU2) ln ln cộng lấy hàm mũ Ur U1 U2 Mạch nhân dùng OA U2 U1 Ur Mạch chia hai điện áp • Ur = U1/U2 • lnUr = ln(U1/U2) = lnU1 - lnU2 • Ur = e(lnU1 - lnU2) ln ln trừ lấy hàm mũ Ur U1 U2 Mạch chia hai điện áp U2 U1 Ur Mạch khai căn bậc hai 1ln2 1 1 2 1 11 ln 2 1ln U rr r eUUU UUU ===>===> == ln 1/2 lấy hàm mũ UrU1 Mạch khai căn bậc hai Uv Ur • Nguồn áp: rn = 0 hoặc rn << Rt Vi- Vi+i+ i- Ur R2 U1 Rt Ứng dụng OA trong chế độ so sánh • Mạch so sánh một ngưỡng V0 U1 U2 220v +Vc -Vc Vi Vo Công dụng mạch so sánh một ngưỡng • Dùng trong các mạch bảo vệ tín hiệu • Dùng trong các mạch tạo góc mở điều khiển các bộ điện tử công suất lớn như chỉnh lưu, băm điện áp, biến tần. • Làm cơ sở để xây dựng các bộ chuyển đổi ADC, DAC trong kĩ thuật số hiện nay. • Tạo ngưỡng để dùng trong các thiết bị vừa đo lường, vừa điều khiển như bù cosϕ, điều khiển nhiệt độ, cân điện tử và nhiều ứng dụng mở rộng khác. • Nhược điểm: • Mạch so sánh kiểu này quá nhạy nên thường sinh ra các xung động trong hệ thống. • rất khó tạo vùng trễ cũng như vùng chết tỏng kĩ thuật bảo vệ. Mạch so sánh 2 ngưỡng đối xứng • Thường dùng trong các mạch tạo xung Trige và dao động đa hài V0 U1 R1 R2 Vi Vo -Vc +Vc -Vi+ +Vi+ 0 21 2 V RR RVi += + Mạch so sánh 2 ngưỡng không đối xứng • V0 = V01 AND Vo2 V0 U1 U2 Vo1 Vo2 V01V02V0 0 0 0 0 1 0 1 0 0 1 1 1 Uv Đồ thị mạch so sánh hai ngưỡng không đối xứng Vi Vo -Vc +Vc U2 U1 Chế độ dao động của OA V0 U1 R1 R2 R Biểu đồ thời gian dao động của OA 0,5Vc+ 0,5Vc- Vo Vi- Vi+ Nguồn cung cấp một chiều • Nguồn cung cấp là một thiết bị rât cần thiết trong mạch điện tử • Nguồn phải cung cấp đủ công suất sử dụng • nguồn phải có khả năng chống nhiễu tôt • Điện áp nguồn phải ổn định • Biên độ điện áp phải đúng yêu cầu. • Đảm bảo an toàn cho mạch đang sử dụng cũng như người dùng. • Nguồn được lấy từ acqui, pin hay chỉnh lưu xoay chiều thành một chiều. Nguồn cung cấp Nguồn pin Nguồn acqui Nguồn chỉnh lưu xoay chiều Chỉnh lưu xoay chiều dùng Diode • Chỉnh lưu Lọc 1 tụ Lọc kết hợp Dạng sóng chỉnh lưu khi có tụ lọc song song với tải Khi mạch tải có nguồn một chiều Khi tải có tính điện cảm Chỉnh lưu cầu dùng diode • Chỉnh lưu cầu giảm được độ nhấp nhô điện áp • Tuy nhiên chưa ổn áp được Dạng sóng chỉnh lưu cầu 1 pha không điều khiển Chỉnh lưu trong mạch 3 pha Ổn áp tham số Rg Rt Rg là điện trở gánh điện áp Rt là tải Lưu ý Diode Zener mắc phân cực ngược Khoảng ổn định thấp và công suất nhỏ Ổn áp tham số tăng công suất • BJT chạy ở chế độ liên tục, • Điện áp thay đổi sẽ làm thay đổi dòng Ic của BJT • Khi có dao động điện áp sẽ làm biến đổi khả năng dẫn của BJT ngược lại, kết quả điện áp trên BJT sẽ thay đổi giữ cho tải được ổn định. Cấu tạo vi mạch LM7805 Ổn áp kiểu điều rộng xung PWM – Pulse Width Modulator • Loại nguồn này hiện nay được dùng rất rộng rãi trong các thiết bị điện tử để cung cấp nguồn áp hay nguồn dòng ổn định cho tải. • Mạch thường dùng các chuyển mạch điện tử như BJT, MOSFET để cắt (băm) điện áp một chiều thành các xung có độ rộng thay đổi sao cho giá trị điện áp trung bình không đổi T1 T U0 Ud 0 1U T TUd = Ổn áp kiểu điều rộng xung PWM – Pulse Width Modulator Ổn áp kiểu điều rộng xung PWM – Pulse Width Modulator Ổn áp kiểu điều rộng xung PWM – Pulse Width Modulator Ổn áp kiểu điều rộng xung PWM – Pulse Width Modulator Ổn áp kiểu điều rộng xung PWM – Pulse Width Modulator Ổn áp kiểu điều rộng xung PWM – Pulse Width Modulator Ổn áp kiểu điều rộng xung PWM – Pulse Width Modulator Loại 3 pha Nguồn xoay chiều nghịch lưu từ một chiều Nguồn xoay chiều nghịch lưu từ một chiều •Chip 80 lõi mở ra kỷ nguyên 'siêu máy tính cá nhân' • Đến nay, chỉ có các nhà khoa học và những ai vận hành các supercomputer mới có cơ hội tiếp cận bộ vi xử lý tốc độ teraflop (nghìn tỷ phép tính mỗi giây). •Việc Intel đưa 80 lõi vào trong một chip đơn đã tạo cơ hội cho người dùng đầu cuối khám phá thế giới điện toán cấp độ tera. TƯƠNG LAI CỦA KĨ THUẬT ĐiỆN TỬ Nhờ kết hợp 80 lõi trên một chip đơn Tiếp theo thiết kế lõi kép và lõi tứ trong năm 2006, Intel đã công bố sản phẩm cỡ 275 mm vuông có khả năng thực hiện 1,01 teraflop, tốc độ 3,16 GHz và xử lý 16 gigaflop/watt. Chip còn có thể thực hiện 1,63 nghìn tỷ phép tính mỗi giây với xung nhịp 5,1 GHz nhưng ngốn nhiều năng lượng hơn. Trong khi đó, ASCI Red, siêu máy tính teraflop của Intel được sản xuất năm 1996 và đặt tại phòng thí nghiệm Sandia ở New Mexico (Mỹ), có thể xử lý lượng điện toán tương tự chip mới nhưng đòi hỏi 500 kilowatt năng lượng và 500 kilowatt làm mát để vận hành 10.000 chip Pentium Pro. ASCI Red khổng lồ với 10.000 chip Pentium Pro Intel chưa có kế hoạch đưa chip 80 lõi ra thị trường nhưng đã dùng nó thể thử nghiệm các công nghệ mới như kết nối băng rộng, quản lý năng lượng... Người sử dụng trong tương lai sẽ có thể dùng máy tính để bàn teraflop để xử lý hàng nghìn gigabyte dữ liệu, thực hiện tính năng nhận dạng giọng nói theo thời gian thực, khai thác dữ liệu đa phương tiện, chơi game, tìm kiếm, xử lý file dung lượng lớn... Tuy vậy, các chuyên gia công nghệ nhận thấy hiệu suất tổng thể của hệ thống sẽ bị ảnh hưởng khi chip chứa quá nhiều lõi. Khả năng hoạt động được cải tiến rõ rệt khi số lõi tăng từ 2 lên 4, 8, 19 nhưng lại bắt đầu giảm với chip 32 lõi và 64 lõi. Để khắc phục vấn đề này, Intel dự kiến sẽ đưa thêm lớp bộ nhớ 3D để giảm thời gian và năng lượng trao đổi dữ liệu giữa các lõi. ...điện toán teraflop sẽ được trang bị cho các hệ thống desktop trong tương lai.. Bóng bán dẫn silicon sẽ hết thời trong 10 năm nữa Viện công nghệ Massachusetts (Mỹ) ước tính 10-15 năm sau, thế giới sẽ chứng kiến sự lên ngôi của bóng bán dẫn không dùng silicon. Họ đang thử nghiệm thiết bị 60 nanomét với vật liệu composite InGaAs (gồm Indium, Gallim, Arsenide Trong hỗn hợp vật liệu này, các hạt electron di chuyển với tốc độ gấp nhiều lần trong silicon. "Chúng tôi theo đuổi công nghệ mới này vì nó sẽ tăng cường khả năng hoạt động và giảm kích cỡ của các thiết bị số", Jesus del Alamo, giáo sư khoa máy tính của viện Massachusetts, Kỹ thuật mới đã gây chú ý cho Intel, hãng sản xuất chip hàng đầu thế giới. "Bóng bán dẫn InGaAs mang lại kết quả khá tốt với mức điện áp thấp 0,5 volt và đây là bước ngoặt rất quan trọng trong ngành máy tính", Ứng dụng trong điều khiển tốc độ động cơ DC Điều khiển động cơ DC có đảo chiều Điều khiển tốc độ động cơ DC bằng PWM Điều khiển động cơ bước Điều khiển động cơ bước Điều khiển động cơ bước Điều khiển công suất trên mạng điện xoay chiều Điều khiển công suất trên mạng điện xoay chiều Điều khiển công suất trên mạng điện xoay chiều Điều khiển công suất trên mạng điện xoay chiều Điều khiển công suất trên mạng điện xoay chiều Điều khiển công suất trên mạng điện xoay chiều
File đính kèm:
- bai_giang_dien_tu_ung_dung_nguyen_hoang_mai.pdf