Bài giảng Máy phát điện

Tóm tắt Bài giảng Máy phát điện: ...ng bnh cụa ieôn ap pha co ieău chưnh. va Imax NngIα βNng max: thanh phaăn chu ky cụa dong cháy qua pha co ieău chưnh ieôn ap cụa MBA khi ngaĩn mách ngoai tnh toan. :'"kcbttI thanh phaăn do vieôc chón soâ vong dađy cac pha khođng c bạn khođng phu hp vi gia tr tnh toan cụa chung gađy neđn: ...rơle có đặc tuyến độc lập. Đối với các rơle quá dòng có đặc tuyến thời gian phụ thuộc có giới hạn loại điện cơ của Liên Xô (cũ) không có các đường đặc tuyến tiêu chuẩn thống nhất, nó thay đổi theo các rơle. Trong tất cả các rơle quá dòng số hiện nay của SIEMENS, ALSTOM, SEL, ABB..., đều tí...ố này trong giới hạn vùng của nó nên rơle B vẫn tác động, nghĩa là gây cắt nhầm.  Tín hiệu liên động ở đầu phát có thể được làm trễ (sườn trước) độc lập với thời gian trễ của phần tử khởi phát tín hiệu.  Tín hiệu liên động sau khi qua giao diện truyền tin của rơle phát cần phải được kéo ...

pdf178 trang | Chia sẻ: havih72 | Lượt xem: 172 | Lượt tải: 0download
Nội dung tài liệu Bài giảng Máy phát điện, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
cách số MICOM. Nó gồm một 
hệ thống dò tìm sự cố, một hệ thống đo khoảng cách và một hệ thống xác định hướng 
công suất (dòng điện) sự cố. 
Chức năng chính của bảo vệ khoảng cách gồm hai phần: bảo vệ khoảng cách 
cho sự cố pha (21P) và bảo vệ khoảng cách cho sự cố chạm đất (21G). 
II.1.1. Bảo vệ khoảng cách cho sự cố pha: 
Rơle khoảng cách số MICOM P441, P442 và P444 có 5 vùng bảo vệ cho sự 
cố pha và được chỉ ra trong đặc tuyến tổng trở tứ giác đặc trưng hình 5.8. 
Hình 5.7: Sơ đồ bảo vệ ĐZ của rơle khoảng cách số MICOM 
Nó có thể bảo vệ được tất cả các sự cố pha xảy ra trong vùng tác động của tứ 
giác đặc trưng và được định hướng như sau: 
 Vùng 1, 2 ,3 là vùng tác động theo hướng thuận, được dùng như một bảo vệ 
khoảng cách ba cấp thông thường, chú ý rằng vùng 1 có thể mở rộng đến vùng 1X 
(vùng 1 mở rộng Zone 1X) khi cần thiết. 
 Vùng P (Zone P) là vùng khả trình. Có thể chọn theo vùng hướng thuận 
hoặc hướng ngược. 
 Vùng 4 là vùng hướng ngược. 
190 
II.1.2. Bảo vệ khoảng cách cho sự cố chạm đất: 
Hình 5.9: Tứ giác đặc trưng cho 
sự cố chạm đất 
Hình 5.8: Tứ giác đặc trưng 
cho sự cố pha 
MICOM cung cấp 5 vùng bảo vệ cho sự cố chạm đất được thể hiện trong 
mạch vòng tổng trở tứ giác đặc trưng hình 5.9. 
Sơ đồ có thể bảo vệ được tất cả các sự cố chạm đất xảy ra trong vùng bảo vệ 
và cũng được xem như một phần của các sự cố pha. 
Đối với sự cố chạm đất, dòng điện dư bắt nguồn từ tổng véctơ dòng điện đầu 
vào (I + Ia b + Ic) được giả tưởng chạy qua mạch vòng sự cố pha - đất. Vì vậy, mạch 
vòng sự cố của bất kì vùng nào cũng phải được mở rộng hệ số nhân (1+kZ0) để so 
sánh với thành phần thứ tự thuận cho phù hợp với sự cố pha. KZ0 được gọi là hệ số 
dòng điện dư và được xác định như sau: 
1100 Z.3/)ZZ(kZ −= 
1100 Z.3/)ZZ(kZ −∠=∠ (Độ) 
Trong đó: 
 Z1: tổng trở thứ tự thuận của ĐZ. 
 Z0: tổng trở thứ tự không của ĐZ. 
 
II.1.3. Tính toán cài đặt các vùng cho rơle khoảng cách số MICOM: 
Mỗi vùng khoảng cách có thể được kích hoạt hoặc không sử dụng, nghĩa là 
chức năng của vùng có thể được 
kết nối để tham gia bảo vệ hoặc 
không được lựa chọn. Để kích 
hoạt một vùng nào đó thì giá trị 
trong ô chọn vùng phải được 
chọn là bit “1”, còn bit “0” nếu 
không dùng vùng đó. Chú ý rằng 
vùng 1 khoảng cách luôn được 
kích hoạt. 
A B C 
Hình 5.10 
Tất cả các giá trị cài đặt vùng đều được tính toán trong hệ tọa độ cực . 
Trong đó Z được tính bằng đơn vị Ohm (Ω) và θ
0Z θ∠
0 (độ). 
191 
 Vùng 1: Của bảo vệ khoảng cách nên được cài đặt sao cho có thể bao phủ 
được càng nhiều phần đường dây được bảo vệ mà cho phép cắt tức thời có chọn lọc 
với tất cả các sự cố xảy ra trong vùng này. Tổng trở đặt vùng 1 thường được xác định 
bằng khoảng (80 ÷ 85)% tổng trở của đoạn ĐZ mà nó làm bảo vệ chính. Đối với rơle 
khoảng cách số MICOM, giá trị tổng trở đặt vùng 1 được xác định theo công thức: 
)(Z.8,0Z AB
)I(
så Ω= (4-80a) 
)(
N
N.ZZ
vt
ct)I(
så
)I(
thæï Ω= (4-80b) 
Với: N , N lần lượt là tỷ số biến của biến dòng và biến điện áp. ct vt
Vùng 1 khoảng cách là vùng tác động chọn lọc tuyệt đối nên thời gian đặt 
vùng 1 có thể chọn bằng 0 (sec). 
 Vùng 2: Giá trị tổng trở đặt vùng 2 nên cài đặt sao cho có thể bao phủ 20% 
đoạn cuối ĐZ còn lại không được bao phủ bởi vùng 1 và toàn bộ phần thanh góp 
trạm liền kề mà khi ngắn mạch tại đó, bảo vệ khoảng cách ở trạm này không thể tác 
động. Thông thường để đơn giản, người ta có thể lấy giá trị đặt của vùng 2 khoảng 
120% giá trị tổng trở của đoạn đường dây được bảo vệ. Để có thể cắt nhanh mọi sự 
cố xảy ra trong vùng 2, có thể dùng các sơ đồ cắt liên động và khi đó vùng 2 có thể 
được mở rộng càng lớn càng tốt. Tuy nhiên vùng 2 không được vượt ra ngoài vùng 1 
của bảo vệ khoảng cách đoạn ĐZ liền kề, điều này là cần thiết để có thể đảm bảo 
được sự phối hợp có chọn lọc với thời gian vùng 2 của bảo vệ của bảo vệ liền kề. 
Đây chính là lý do mà vùng 2 bảo vệ khoảng cách nên cài đặt bao phủ dưới 50% tổng 
trở đoạn ĐZ ngắn nhất của đoạn ĐZ liền kề. Giá trị tổng trở vùng 2 có thể tính theo 
công thức: 
)(Z.3,0ZZ BCAB
)II(
så Ω+= (4-81a) 
)(
N
N.ZZ
vt
ct)II(
så
)II(
thæï Ω= (4-81b) 
Thời gian đặt vùng 2 của bảo vệ được phối hợp với thời gian cắt của vùng 1 
ĐZ liền kề. Thời gian trễ nhỏ nhất của vùng 2 có thể lấy bằng 200 msec. Thời gian 
này phải được điều chỉnh khi yêu cầu phải phân cấp với vùng 2 của bảo vệ khác hoặc 
phối hợp để bảo vệ dự phòng cho bảo vệ của đoạn liền kề. Thông thường thời gian 
đặt cấp 2 của các bảo vệ khoảng cách đặt tại các TBA A,B,C là như nhau và được 
xác định theo công thức: 
ttt I )1n(
II
n Δ+= + (4-82) 
Trong đó: 
 thời gian đặt cấp 1 của bảo vệ đoạn liền kề cần phối hợp. :t I )1n( +
 Δt: bậc chọn lựa thời gian, thường Δt = 0,5 sec. 
* Vùng 3: Thường được dùng làm nhiệm vụ bảo vệ dự trữ cho vùng 1, vùng 2 
và bảo vệ khoảng cách của đoạn ĐZ liền kề, trên thực tế để đơn giản người ta thường 
tính giá trị tổng trở đặt vùng 3 của bảo vệ khoảng cách bao trùm 120% tổng trở của 
ĐZ dài nhất liền kề. Điều này cho phép rơle khoảng cách đặt tại TBA A có thể cắt 
được các ngắn mạch trên ĐZ liền kề khi toàn bộ các bảo vệ của đoạn này không làm 
việc. Tổng trở đặt vùng 3 được xác định theo công thức: 
2,1).ZZ(Z BCAB
III
så += (4-83a) 
)(
N
N
.ZZ
vt
ctIII
så
III
thæï Ω= (4-84b) 
Thời gian đặt vùng 3 được phối hợp với thời gian đặt vùng 2 của bảo vệ đoạn 
liền kề. Thời gian tác động nhỏ nhất vùng 3 của rơle khoảng cách MICOM có thể đạt 
đến 400 msec 
192 
 Vùng P: Là vùng khả trình, việc tính toán cài đặt cho vùng P phụ thuộc vào 
các ứng dụng cụ thể của nó. Các ứng dụng vùng P ở đây có thể sử dụng như một bảo 
vệ dự phòng hướng ngược cho thanh cái và MBA, cũng có thể sử dụng vùng P hướng 
thuận để tăng số vùng của bảo vệ. Vùng P cũng có thể hữu ích cho các trường hợp 
tương hỗ trong bảo vệ ĐZ kép. 
 Vùng 4: Là vùng hướng ngược, thường được sử dụng làm bảo vệ cho thanh 
cái TBA. Khi đó tổng trở vùng 4 có thể cài đặt đến 25% tổng trở vùng 1của rơle phía 
hướng ngược cho ĐZ ngắn (<30 Km) hoặc 10% tổng trở vùng 1 cho ĐZ dài. Phương 
pháp cài đặt tổng trở vùng 4 cũng có thể được xem xét khi yêu cầu về mặt an toàn để 
tránh đóng điện vào điểm sự cố khi dùng TĐL. Ở Việt Nam, vùng 4 thường chỉ được 
sử dụng để thu thập dữ liệu sự cố phục vụ cho công tác điều độ. 
Thời gian đặt vùng 4 cần phải phối hợp với thời gian của tất cả các bảo vệ 
đoạn ĐZ liền kề trong vùng hướng ngược của rơle. 
Ngoài ra, với rơle khoảng cách số MICOM chúng ta còn phải tính toán các giá 
trị điện trở cho sự cố pha và sự cố chạm đất. 
 Tính toán giá trị điện trở đặt cho sự cố pha: Các giá trị điện trở này được 
thể hiện trên đặc tuyến tổng trở tứ giác hình 5.8, các giá trị điện trở này (Rph) được 
cài đặt độc lập với tổng trở của ĐZ được bảo vệ. Rph được định nghĩa là phần điện trở 
sự cố lớn nhất thêm vào tổng trở ĐZ vùng khoảng cách sẽ cắt, không phụ thuộc vào 
vị trí của vùng sự cố. Điện trở vùng phía bên phải và bên trái trong đặc tuyến tổng trở 
đặc trưng được biểu thị bởi +Rph và -Rph. Khi cài đặt rơle, giá trị Rph phải bao phủ 
cực đại điện trở sự cố pha-pha. Một cách tổng quát, giá trị điện trở này phải được cài 
đặt lớn hơn giá trị điện trở hồ quang lớn nhất do sự cố pha-pha gây ra, điện trở hồ 
quang đó (Rarc) được tính theo công thức Van Warrington: 
4,1
f
hq
I
D.28700R = (Ω) (4-85) 
hqph RR ≥ (4-86) 
Trong đó: 
 D: khoảng cách đẳng trị giữa các pha (m), với ĐZ ba pha trên không giá trị 
D có thể được xác định: 
3 BCACAB D.D.DD = (m) 
với DA , D , D là khoảng cách giữa các pha AB,AC,BC. B AC BC
Bảng dưới đây cho các giá trị điện trở R
B
hq tương ứng với dòng sự cố nhỏ nhất 
đối với các sự cố pha-pha tương ứng với các cấp điện áp khác nhau: 
Khoảng cách 
cách điện (m) 
Điện áp hệ thống 
(kV) 
If = 1 I
kA 
f = 5 If = 10 
kA kA 
2 33 3,6 (Ω) 0,4 (Ω) 0,2 (Ω) 
5 110 9,1 (Ω) 1,0 (Ω) 0,4 (Ω) 
8 220 14,5 (Ω) 1,5 (Ω) 0,6 (Ω) 
 I :dòng ngắn mạch nhỏ nhất khi xảy ra sự cố pha-pha. f
 Tính toán giá trị điện trở đặt cho sự cố chạm đất: 
Điện trở cài đặt của rơle cho sự cố chạm đất (RG) nên thoả mãn các yêu cầu 
đòi hỏi của điện trở sự cố, nhưng tránh thao tác khi trở kháng tải là nhỏ nhất. Điện trở 
sự cố bao gồm điện trở hồ quang và điện trở cố định. Ngoài ra, tốt nhất điện trở bất kì 
vùng nào của rơle, thông thường không nên lớn hơn 10 lần điện trở mạch vòng đất. 
Nói chung giá trị điện trở này nên lấy khoảng 40Ω tính theo phía sơ cấp hệ 
thống. Đối với trường hợp điện trở chạm đất lớn, tình huống này có thể xuất hiện nơi 
không có phần tử khoảng cách nào có thể tác động. Trong trường hợp này phải sử 
dụng các thiết bị bảo vệ sự cố chạm đất bổ sung. 
193 
II.2. Các sơ đồ bảo vệ khoảng cách: 
II.2.1. Các sơ đồ cơ bản của rơle khoảng cách số MICOM: 
Các sơ đồ bảo vệ khoảng cách cơ bản phù hợp cho các ứng dụng mà ở đó 
không đòi hỏi sử dụng kênh tin. Một cách tổng quát, vùng 1 và 2 cung cấp chức năng 
bảo vệ chính như trong hình 5.11 còn vùng 3 đóng vai trò bảo vệ dự phòng. 
Hình 5.11: Bảo vệ chính trong sơ đồ cơ bản
Trên hình 5.12 trình bày sơ đồ cắt logic cơ bản của rơle khoảng cách số 
MICOM. Chú ý rằng, với rơle khoảng cách số P441, P442 và P444, các bộ thời gian 
vùng từ t đến tZ1 Z4 hoạt động độc lập nhau và cùng bắt đầu tính thời gian kể từ khi sự 
cố được tìm thấy. Điều này giải thích tại sao chúng được đưa vào song song nhau 
trong sơ đồ logic. 
Hình 5.12: Sơ đồ cắt logic cơ bản 
Các dấu nháy sử dụng trong sơ đồ (ví dụ ) chỉ ra rằng các vùng bảo vệ '1Z
được làm ổn định để tránh tác động xấu của dòng từ hoá máy biến áp. Phương pháp 
được sử dụng đạt được độ tin cậy về khả năng dò tìm thành phần sóng hài bậc hai. 
Sơ đồ cơ bản đã hợp nhất các các đặc tính sau: 
 Vùng 1 cho phép cắt tức thời, cũng có thể chọn thời gian trễ từ (0 ÷ 10) sec. 
Thời gian cắt trễ vùng 2, 3, 4 và P cũng có thể cài đặt từ (0 ÷ 10) sec. 
Sơ đồ khoảng cách cơ bản trên thường thích hợp cho các ĐZ đơn hoặc kép có 
một nguồn hay hai nguồn cung cấp. Hạn chế của sơ đồ cơ bản này là khi xảy ra sự cố 
ở cuối ĐZ (khoảng 20% chiều dài đoạn cuối ĐZ bảo vệ), thời gian cắt sự cố tăng lên 
194 
đến thời gian cắt vùng 2. Thời gian này có thể được cải thiện nếu sử dụng sơ đồ vùng 
1 mở rộng. 
II.2.2. Sơ đồ vùng 1 mở rộng: 
Sơ đồ vùng 1 mở rộng (zone 1 extension) có thể ứng dụng cho các xuất tuyến 
hình tia để cung cấp bảo vệ tốc độ cao cho toàn bộ đoạn ĐZ được bảo vệ. Trên hình 
5.13 trình bày tổng trở vùng 1 mở rộng so với vùng 1. 
Trong vùng này vùng 1X được kích hoạt và cài đặt đến phần vượt vùng của 
ĐZ được bảo vệ. Vùng 1X thường được sử dụng kết hợp với TĐL để có thể cắt 
nhanh các sự cố và nâng cao độ tin cậy cung cấp điện của hệ thống điện. 
Hình 5.13: Sơ đồ vùng 1 mở rộng 
II.3. Các sơ đồ cắt liên động: 
Các sơ đồ khoảng cách sử dụng truyền cắt tín hiệu cho phép có thể được chọn 
lựa bởi các sơ đồ tiêu chuẩn sau: 
 Các sơ đồ truyền cắt liên động do phần tử nội tuyến truyền tín hiệu cho 
phép (PUTT): sơ đồ PUP Z2 (Permission underreaching protection Zone 2) và PUP 
Fwd (Fwd: Forward fault detection). 
 Các sơ đồ truyền cắt liên động do phần tử vượt tuyến truyền tín hiệu cho 
phép: sơ đồ POP Z2 và POP Z1. 
 Sơ đồ logic nguồn yếu do phần tử vượt vùng truyền tín hiệu cho phép. 
 Sơ đồ logic giải khoá. 
 Sơ đồ khoá BOP Z2 (Blocking overreaching protection zone Z2) và BOP 
Z1. 
 Sơ đồ logic đảo dòng. 
II.3.1 Sơ đồ cắt liên động do phần tử nội tuyến truyền tín hiệu cho phép 
(PUTT):sơ đồ PUP Z2: 
Để cung cấp khả năng loại trừ một cách nhanh nhất tất cả các sự cố, cả sự cố 
thoáng qua và sự cố duy trì dọc theo chiều dài của mạch đường dây được bảo vệ cần 
phải sử dụng sơ đồ truyền tín hiệu cho phép. Trong đó sơ đồ liên động do phần tử nội 
tuyến truyền tín hiệu cho phép là sơ đồ đơn giản nhất đã được tích hợp trong rơle 
khoảng cách số P441, P442 và P444 của ALSTOM. Kênh truyền cho sơ đồ PUP sử 
dụng tín hiệu cho phép do phần tử nội tuyến phát ra. Trên hình 5.14 trình bày sơ đồ 
vùng 1, vùng 2 và trên hình 5.15 trình bày sơ đồ logic cắt liên động. Nguyên lý làm 
việc của sơ đồ như sau: Giả sử khi ngắn mạch xảy ra tại N1, điểm ngắn mạch này 
thuộc vùng 2 của bảo vệ khoảng cách đặt tại A và thuộc vùng 1 của bảo vệ khoảng 
cách đặt tại B. Bảo vệ khoảng cách tại B sẽ tác động cắt máy cắt tại B đồng thời gởi 
tín hiệu cho phép đến bộ phận thu tín hiệu bảo vệ A, bộ dò tìm sự cố tại A cũng đã 
phát hiện ra sự cố và cắt máy cắt tại A, thời gian loại trừ hoàn toàn sự cố này nhỏ hơn 
rất nhiều so với thời gian đặt vùng 2. Như vậy sự cố sẽ được loại trừ với thời gian 
195 
nhanh nhất có thể, thời gian này phụ thuộc vào thời gian truyền tín hiệu liên động 
giữa hai bảo vệ đặt ở hai đầu ĐZ và thời gian trễ của bảo vệ cộng với thời gian trễ 
của máy cắt. 
Hình 5.14: Sơ đồ phối hợp vùng 1 và vùng 2 
Ưu điểm của sơ đồ loại này là: 
 Chỉ sử dụng kênh truyền truyền tín hiệu đơn công nên chi phí cho kênh 
truyền tương đối thấp. 
 Sơ đồ cho phép cắt với độ tin cậy tương đối cao với các sự cố trong vùng 
bảo vệ. 
 Thời gian loại trừ sự cố ở cuối ĐZ (khoảng 20% chiều dài đoạn cuối ĐZ ) 
khá nhanh. 
Tuy nhiên, nếu ngắn mạch có dòng tương đối bé mà bộ dò tìm sự cố phía bộ A 
không phát hiện được hoặc kênh truyền tin bị sự cố thì bảo vệ phía A (hình 5.15) 
cũng sẽ không tác động. 
Hình 5.15: Sơ đồ logic cắt liên động PUP Z2 
II.3.2 Sơ đồ cắt liên động do phần tử vượt tuyến truyền tín hiệu cho phép 
(POTT) POP Z2: 
Đây là dạng sơ đồ biến thể thứ hai của họ rơle P44X, sơ đồ này có một số tính 
chất và yêu cầu sau: 
 Sơ đồ đòi hỏi dùng kênh truyền tin kiểu song công để ngăn ngừa rơle có thể 
tác động nhầm. 
196 
 Sơ đồ POP Z2 thường được sử dụng tốt hơn đối với ĐZ có chiều dài ngắn 
mà ở đó giá trị điện trở sự cố biến động mạnh vì vùng 2 bao phủ lớn hơn vùng 1. 
 Logic dòng điện đảo ngược được sử dụng để ngăn ngừa cắt sai ĐZ được 
bảo vệ do tốc độ cao của dòng điện ngược xuất hiện khi sự cố mà một nhánh của 
mạch ĐZ kép vừa được cắt ra. 
Hình 5.16: Sơ đồ logic POP Z2 
 Nếu kênh tin bị sự cố, khi đó sơ đồ bảo vệ khoảng cách cơ bản sẽ tác động. 
Hình 5.16 trình bày hình thức đơn giản của sơ đồ logic. Sơ đồ POP Z2 cũng có thể 
được sử dụng cho vùng 4 hướng ngược của rơle như một bộ dò tìm sự cố hướng 
ngược. Điều này được dùng trong logic dòng điện đảo và trong đặc tính phản hồi 
nguồn yếu. 
II.3.4. Sơ đồ khoá liên động với vùng 2: 
Khác với sơ đồ dùng tín hiệu cho phép, loại sơ đồ này dùng tín hiệu khoá 
truyền đến bộ phận thu tín hiệu của rơle phía đối diện khi phát hiện sự cố ở vùng 
ngược (vùng 4 hướng ngược), điều này sẽ cho phép cắt nhanh các sự cố ở cuối ĐZ. 
Sơ đồ có các đặc điểm sau: 
 Sơ đồ khoá liên động chỉ yêu cầu kênh truyền tín hiệu đơn công nên chi phí 
cho kênh truyền sẽ giảm đi. 
 Vùng 4 hướng ngược được sử dụng để gởi tín hiệu khoá đến rơle phía đối 
diện để tránh cắt nhầm. 
 Khi kênh truyền đơn công được sử dụng, sơ đồ BOP có thể dễ dàng ứng 
dụng các thiết bị đầu cuối. 
 Sẽ dễ dàng sử dụng hệ thống tải ba (PLC) để truyền tín hiệu khoá. 
 Có thể cắt nhanh chóng các nguồn công suất lớn phía cuối ĐZ. 
Hình 5.17: Bảo vệ chính trong sơ đồ BOP Z2 
197 
Hình 5.18: Sơ đồ khối logic BOP Z2 
 Nếu kênh truyền bị sự cố thì rơle khoảng cách sẽ làm việc như một bảo vệ 
khoảng cách thông thường. 
III. Tính toán thông số cài đặt rơle khoảng cách micom 
cho xuất tuyến 220kv đà nẵng-huế (tba 500kv đà nẵng-
tba 220kv huế) 
III.1. Các số liệu hệ thống: 
 Chiều dài đoạn đường dây (line length): 
 Đà nẵng - Huế: l = 97,72 Km. 
 Huế - Đồng hới: l = 170 Km. 
 Tổng trở đường dây Đà nẵng - Huê - Đồng hới (line impendances): 
 Tổng trở thứ tự thuận (Positive sequence impendance): 
0
1 80 0,252Z ∠= (Ω/Km). 
 Tổng trở thứ tự không (zero sequence impendance): 
0
0 82877,0Z ∠= (Ω/Km). 
 Tổng trở MBATN AT4 tại TBA 220 HUẾ: 
0
B 9,76025,486,485,0Z −∠=+= (Ω). 
 Tỷ số biến dòng điện (current transformer ratio): N = 1200/1 (A) ct
 Tỷ số biến dòng điện (voltage transformer ratio): Nvt = 220000/110 (V) 
198 
III.2. Các giả thiết ban đầu: 
Trong thực tế không phải lúc nào người ta cũng sử dụng tất cả các vùng của 
rơle khoảng cách số để bảo vệ mà việc cài đặt vùng nào tác động và vùng nào bị 
khoá còn phụ thuộc vào từng trường hợp cụ thể như: vị trí của bảo vệ trong hệ thống, 
mức độ biến động của phụ tải, công suất của hệ thống..., thông thường ở Việt Nam 
các rơle khoảng cách số được sử dụng như một bảo vệ khoảng cách ba cấp. Nghĩa là: 
vùng 1, vùng 2, vùng 3 được cài đặt để thực hiện các chức năng bảo vệ còn còn vùng 
4, vùng P thường được sử dụng để thu thập các thông số biến động của hệ thống 
phục vụ cho công tác điều độ. 
Trên tình thần đó, ở đây chúng ta giả thiết rằng vùng 1 mở rộng (zone 1 
extension), vùng khả trình P (zone programmable), vùng 4 không sử dụng và chỉ sử 
dụng ba vùng hướng thuận. 
Các giá trị cài đặt cho rơle khoảng cách số MICOM được tính toán qui đổi về 
giá trị sơ cấp. 
Góc pha ĐZ cài đặt cho rơle từ -900 đến +900 0, bước nhảy là 1 . 
III.3. Tính toán chi tiết: 
III.3.1. Giá trị tổng trở toàn bộ đường dây tính ở giá trị sơ cấp: 
 Đoạn Đà nẵng - Huế: 
00
så1 8062,2472.97.80252,0Z ∠=∠= 
 (Ω). 244,24275,4 +=
 Đoạn Huế - Đồng hới: 
00
så1 8084,42170.80252,0Z ∠=∠= (Ω). 
III.3.2. Các giá tại cài đặt pha vùng 1: 
Vùng 1 được yêu cầu phải bảo vệ khoảng 85% chiều dài đường dây giữa TBA 
500 kV ĐÀ NẴNG và TBA 220 kV HUế. 
00
så 8020,9278062,24.85,0Z ∠=∠= (Ω) 
 Giá trị đặt vùng 1: 20,927 (Ω). 
 Góc pha: 80 (Độ). 
III.3.3. Các giá trị cài đặt pha vùng 2: 
Vùng 2 yêu cầu phải bảo vệ được khoảng 20% đoạn đường dây còn lại mà 
vùng 1 không với tới và phải bao trùm hoàn toàn thanh cái TBA 220 kV HUẾ cộng 
với khoảng 30% chiều dài đoạn ĐZ Huế - Đồng hới. 
00
så 8084,42.3,08062,24Z ∠+∠= 
08037,477∠= (Ω) 
 Giá trị đặt thực sự của cùng 2: 37,477 (Ω). 
 Góc pha: 80 (Độ). 
III.3.4. Các giá trị đặt vùng 3: 
Vùng 3 ở đây yêu cầu ngoài bảo vệ dự trữ cho vùng 1, vùng 2 của bảo vệ 
khoảng cách đặt tại TBA 500 kV ĐÀ NẴNG còn bảo vệ dự trữ cho bảo vệ khoảng 
cách tại TBA 220 kV Huế. Giá trị tổng trở đặt vùng 3 được xác định bằng 120% 
chiều dài ĐZ Đà nẵng - Huế - Đồng hới. 
199 
2,1).8084,428062,24(Z 00så ∠+∠= 
265,8673846,72j775,4 ∠=+= (Ω) 
 Giá trị đặt thực sự vùng 3: 73 (Ω). 
 Góc pha: 87 (Độ). 
200 
Bảng các mã số của rơle 
2 Phần tử thời gian 
3 Chức năng kiểm tra hoặc khoá liên động 
4 Contactor chính 
21 Bảo vệ khoảng cách 
24 Chức năng quá kích từ 
25 Chức năng kiểm tra đồng bộ 
26W Rơle bảo vệ quá nhiệt cuộn dây mba 
26Q rơle nhiệt độ dầu 
27 Bảo vệ điện áp giảm 
30 Rơle tín hiệu 
32 Chức năng định hướng công suất 
32P Chức năng dao động điện 
32Q Chức năng định hướng công suất thứ tự nghịch 
33 Rơle mức dầu tại mba 
40 Chức năng bảo vệ mất từ trường 
46 Rơle dòng cân bằng pha 
47 Chức năng thiểu áp thứ tự thuận 
50 Bảo vệ quá dòng cắt nhanh 
50/87 Bảo vệ so lệch cắt nhanh 
50BF Chức năng từ chối cắt (sự cố máy cắt) 
50G Bảo vệ quá dòng chạm đất tức thời 
50F Chức năng bảo vệ đóng điện vào điểm sự cố 
51 Bảo vệ quá dòng có thời gian 
51N Bảo vệ quá dòng chạm đất có thời gian 
51P Bảo vệ quá dòng pha có thời gian 
52 Máy cắt (MC) 
52a Tiếp điểm phụ “thường mở” của MC 
52b Tiếp điểm phụ “thường đóng” của MC 
55 Rơle hệ số công suất 
59 Chức năng điện áp cực đại 
63 Bảo vệ áp suất tăng cao trong mba 
64 Bảo vệ chống chạm đất có độ nhạy cao 
64R Bảo vệ chống chạm đất có độ nhạy cao cho cuộn dây rotor 
64G Bảo vệ chống chạm đất có độ nhạy cao cho cuộn dây stator 
67 Bảo vệ quá dòng có hướng 
74 Rơle kiểm tra cuộn cắt MC 
79 Tự động đóng trở lại (TĐL) 
81 Rơle tần số 
84 Bộ điều áp MBA 
86 Rơle khoá trung gian 
87 Bảo vệ so lệch 
87B Bảo vệ so lệch thanh cái 
87G Bảo vệ so lệch máy phát 
87L Bảo vệ so lệch ĐZ 
87M Bảo vệ so lệch động cơ 
87T Bảo vệ so lệch MBA 
90 Chức năng tự động điều chỉnh điện áp 
96B Rơle khí Buchholz 
 9 - 

File đính kèm:

  • pdfbai_giang_may_phat_dien.pdf
Ebook liên quan