Bài giảng Mô hình hóa môi trường - Lê Anh Tuấn
Tóm tắt Bài giảng Mô hình hóa môi trường - Lê Anh Tuấn: ...ơng trình liên tục (equations of continuity) cho các dòng nước mặt và nước trong đất. Mô hình vật lý và mô hình xác định nằm trong nhóm mô hình “hộp trắng”. Mô hình “hộp đen” (black box): là mô hình mà người sử dụng chỉ biết đầu vào (inputs) và đầu ra (outputs) mà hoàn toàn không biết nhữn...c thông số mô hình Thời gian t Lưu lượng Q Q mô hình Q thực tế Khi thực hiện mô hình diễn tả quan hệ mưa – dòng chảy của một lưu vực, ta có thể tối giản quan hệ này theo sơ đồ như hình 3.3. Hình 3.3 Sơ đồ diễn tả bài toán quan hệ mưa – dòng chảy Giả sử kết quả của một mô hình nào đó c...i hay nhiều lưu vực tương tự về mặt thủy học (hầu hết được định dạnh bằng cách mở rộng), việc chuyển dịch thông số được khuyến kích sử dụng. Nếu phát hiện có sự khác biệt thực tế về mặt thủy văn thì vấn đề chuyển dịch thông số cần phải xem xét lại. iii). Muốn định danh sự tương tự lưu vực ch...
cần thiết phải định lượng các điều kiện kiểm nghiệm. Việc này thể hiện qua khái niệm hàm mục tiêu (objective function - OF). Hàm mục tiêu là một trị số của tiến trình thống kê đặc thù thể hiện mức độ tương ứng, hoặc còn gọi là độ gần (degree of closeness), giữa giá trị thực đo và giá trị mô phỏng. Có nhiều kiểu để xác định hàm mục tiêu OF tùy theo mục đích đặc thù và tương quan trong các mô hình ứng dụng. Hàm mục tiêu thường theo xu hướng tiến đến trị 0 (khi hàm mục tiêu là tối thiểu hóa, OF → 0) hoặc tiến đến trị đơn vị, OF → 1 (khi hàm mục tiêu là tối đa hóa). 4.2.3 Các trị số thống kê dùng cho kiểm nghiệm Khi kiểm nghiệm các trị số thống kê thường được áp dụng để so sánh độ phù hợp giữa trị mô phỏng và trị quan trắc cho cả chuỗi thời gian và cho từng sự kiện riêng rẽ rời rạc ở kết quả đầu ra. Việc này có thể đánh giá qua thống kê mức độ phù hợp (goodness-of-fit statistics) từ kết quả mô hình và thực tế. Sự đồng biến về chuỗi thời gian trên cơ sở phép áp 1:1. Nghĩa là giá trị mô phỏng có "gần" với trị trung bình của số liệu đo thực tế không. Ngoài ra các trị thống kê khác cần được xem xét, gồm: i). Trị trung bình (mean) ∑ = = n 1i ixn 1X (4-1) trong đó: X - trị trung bình của các trị quan trắc; xi - trị quan trắc được ở thời điểm thứ i; n - số thời điểm quan trắc (hoặc tổng số trị quan trắc) Hàm mục tiêu liên quan đến trị trung bình thể hiện mức độ phần trăm (%) giữa trị trung bình số quan trắc và số mô phỏng. Nếu mô hình là tốt thì hàm mục tiêu trị trung bình phải tối thiểu hóa (tiến đến trị 0): 0 X y) -x (.100 → (4-2) ii). Phương sai (variance) Vx ( )∑ = −= n 1i 2 ix Xx1-n 1V (4-3) Mô hình được xem là tốt khi hàm mục tiêu của phương sai là tối thiểu hóa: 0 V )V(V .100 2 x 2 y 2 x →− (4-4) Bài giảng môn học MÔ HÌNH HÓA MÔI TRƯỜNG Trường Đại học Cần Thơ ----------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------- TS. Lê Anh Tuấn 34 iii). Độ lệch chuẩn (standard deviation) Sx xx VS = (4-5) Mô hình được xem là tốt khi hàm mục tiêu của độ lệch chuẩn là tối thiểu hóa: 0 S )S(S .100 x yx →− (4-6) iv). Hệ số biến động (variance deviation) CVx X SCV xx = (4-7) Mô hình được xem là tốt khi hàm mục tiêu của hệ số biến động là tối thiểu hóa: 0 CV )CV(CV .100 x yx →− (4-8) v). Hệ số thiên lệch (skewness) CSx ∑ = −= n 1i 3 i x x )Xx(2)-1)(n-n(S nCS (4-9) Mô hình được xem là tốt khi hàm mục tiêu của hệ số thiên lệch là tối thiểu hóa: 0 CS )CS(CS .100 x yx →− (4-10) vi). Sai số thống kê + Sai số chuẩn của trị trung bình (standard error of the mean) các trị quan trắc n SSE xx = (4-11) + Sai số tiêu chuẩn trung bình (root mean square error - RMSE) của trị quan trắc xi và trị mô phỏng yi n )y(x RMSE n 1i 2 ii∑ = − = (4-12) Trị RMSE càng gần 0 thì mức phù hợp giữa thực tế và mô hình càng cao. vii). Hệ số tương quan (correlation coeffient) cho quan hệ tuyến tính Trường hợp kết quả mô hình cho quan hệ tuyến tính giữa 2 biến số x và y như hình 4.1. Trong đó x là biến số độc lập (trị quan trắc) và y là biến số phụ thuộc (trị mô phỏng). Phương pháp vẽ đường quan hệ theo bình phương cực tiểu để xác định hồi quy tuyến tính thường được áp dụng. Bài giảng môn học MÔ HÌNH HÓA MÔI TRƯỜNG Trường Đại học Cần Thơ ----------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------- TS. Lê Anh Tuấn 35 Khi đó quan hệ giữa 2 dãy số liệu theo phương trình đường thẳng y = ax +b, trong đó a là hằng số nền và b là độ dốc của đường thẳng. 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 Trị quan trắc (xi) Tr ị m ô ph ỏ ng (y i) Hình 4.1: Một ví dụ về đường tương quan tuyến tính giữa trị quan trắc và trị mô phỏng Hệ số tương quan R giữa trị quan trắc và trị mô phỏng các định theo: ( )( ) ∑∑ ∑ == = −− −− = n 1i 2 i n 1i 2 i n 1i ii )Yy(.)Xx( YyXx R (4-13) trong đó: X và Y - trị trung bình của các trị quan trắc và các trị mô phỏng; xi và yi - trị quan trắc và trị mô phỏng được ở thời điểm thứ i; n - số thời điểm quan trắc (hoặc tổng số trị quan trắc) • Hệ số tương quan R càng gần tiến đến ± 1 thì mức đồng tương quan càng lớn. • Khi R > 0 thì tương quan là đồng biến và khi R < 0 thì tương quan là nghịch biến. • R càng tiến về 0 thì tương quan càng kém. • Hàm mục tiêu của hệ số tương quan là tối đa hóa, R → 1 viii). Độ dốc b (slope) cho đường bình phương cực tiểu (least-square line) thể hiện sự quan hệ giữa sự thay đổi xu thế mô phỏng và sự thay đổi xu thế quan trắc: 2n 1i i n 1i 2 i n 1i i n 1i i n 1i ii xxn y.xyxn b − − = ∑∑ ∑∑∑ == === (4-14) Hàm mục tiêu của độ dốc b là tối đa hóa đến trị đơn vị, nghĩa là b càng tiến đến 1 thì khả năng "phù hợp" của các trị số càng cao. Bài giảng môn học MÔ HÌNH HÓA MÔI TRƯỜNG Trường Đại học Cần Thơ ----------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------- TS. Lê Anh Tuấn 36 x y y = ax + b y1 y2 yi yn iyˆ 1yˆ 2yˆ xi yi )yˆy( ii − iyˆ ix). Hằng số nền (base constant) hay độ chắn y (y-intercept) n xby a n 1i i n 1i i ∑∑ == − = (4-15) Nếu quan hệ là đồng biến thì y = ax + b. Hàm mục tiêu của a → 0. x). Tổng các thống kê bình phương (sums of squares statistics) + Toàn tổng các bình phương (total sum of squares - SST) là một số đo sự phân tán của các giá trị mô phỏng so với trị trung bình. STT được xác định như sau: ∑ = −= n 1i 2 i )Y(ySST (4-16) + Tổng các bình phương giải nghĩa (explained sum of squares - SSR) là tổng sai lệch các giá trị mô phỏng (lấy từ đường quan hệ tuyến tính giữa các chuỗn thực đo và chuỗi mô hình) với trị trung bình mô phỏng: ∑ = −= n 1i 2 i )Yyˆ(SSR (4-17) Trị iyˆ là giá trị xác định trên đường thẳng quan hệ tuyến tính giữa các số đo thực tế và các số mô phỏng, như hình 4.2: Hình 4.2 Giá trị iyˆ trên đường quan hệ tuyến tính giữa số thực đo và số mô phỏng + Tổng các bình phương phi giải nghĩa (unexplained sum of squares - SSE) là tổng bình phương các khoảng lệch cực tiểu )yˆy( ii − , như minh họa trên hình 4.2. ∑ = −= n 1i 2 ii )yˆ(y SSE (4-18) + Tương quan của 3 trị tổng bình phương trên là: SST = SSR + SSE (4-19) Thực chất, sai lệch này là sai số làm tròn, do vậy dấu bằng (=) nên thay là dấu xấp xỉ (≈) SST ≈ SSR + SSE (4-20) Bài giảng môn học MÔ HÌNH HÓA MÔI TRƯỜNG Trường Đại học Cần Thơ ----------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------- TS. Lê Anh Tuấn 37 xi). Hệ số định trị (coefficient of determination) dùng để đo mức độ phối hợp giữa các trị mô phỏng và các trị lấy từ đường quan hệ mô phỏng: SST SSR SST SSE-SST )Yy( )yˆy()Yy( r n 1i 2 i n 1i n 1i 2 ii 2 i 2 == − −−− = ∑ ∑ ∑ = = = (4-21) Giá trị r2 luôn luôn nhỏ hơn 1 nhưng không thể là giá trị nhỏ hơn 0. Trị r2 càng cao càng chứng tỏ mức độ phối hợp càng tốt. Hàm mục tiêu của hệ số định trị là tối đa hóa trị r2. xii). Hệ số hữu hiệu (coefficient of efficiency) là số đo mức độ phối hợp giữa các giá trị quan trắc và trị mô phỏng. ∑ ∑ ∑ = = = − −−− = n 1i 2 i n 1i n 1i 2 ii 2 i )Yy( )xy()Yy( E (4-22) Giá trị E có thể dưới số 0 nhưng không thể lớn hơn 1. Hàm mục tiêu của hệ số hữu dụng là tối đa hóa trị E tiến đến trị r2. xiii). Hệ số đồng thuận (coeffient of agreement - IA) thể hiện sự hài lòng về mức độ tiên đoán sai số của mô hình từ phương trình hồi quy: ( )∑ ∑ = = −+− − = n 1i 2 ii n 1i 2 ii YyYyˆ )yyˆ( -1IA (4-23) Giá trị IA càng gần đến 1 thì sự đồng thuận cao, càng gần đến 0 thì sự bất đồng thuận lớn. Hàm mục tiêu cho hệ số đồng thuận là tối đa hóa IA → 1. 4.3 Vấn đề kiểm nghiệm mô hình 4.3.1 Các vấn đề thường gặp • Trong kiểm nghiệm mô hình, lý tưởng nhất là số liệu quan trắc có đầy đủ sự kiểm soát chất lượng, đủ chi tiết và đủ độ dài theo thời gian. • Thực tế là chuỗi số liệu không đủ dài, cần phải có các phương pháp mới để kéo dài chuỗi số liệu từ thực tế ngoài hiện trường hoặc lấy thêm từ các lưu vực tương tự, tình huống môi trường xấp xỉ. • Cần thiết phải đánh giá các ảnh hưởng do sự không chắc chắn của các thông số nhập vào mô hình khi xem xét sự thể hiện mô hình. • Các số liệu thực tế nghèo nàn có thể dẫn đến sự hiệu chỉnh và kiểm chứng sai lạc. Một số người làm mô hình cố gắng sử dụng phép ngoại suy để kéo dài chuỗi số Bài giảng môn học MÔ HÌNH HÓA MÔI TRƯỜNG Trường Đại học Cần Thơ ----------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------- TS. Lê Anh Tuấn 38 liệu có thể dẫn đến tình trạng có kết quả giải đáp đúng cho những nguyên nhân sai lầm. Điều này làm hạn chế hiệu quả mô hình. 4.3.2 Hậu kiểm việc phê chuẩn và kiểm nghiệm mô hình • Mặc dầu việc hiệu chỉnh và kiểm chứng có thể thỏa mãn một số chỉ tiêu thống kê nhưng cũng cần đánh giá độ chính xác của mô hình khi tiên đoán kết quả cho tương lai. Bước làm này gọi là hậu kiểm (post-audit). • Trong công việc hậu kiểm, các dữ liệu mới sẽ được thu thập nhiều năm sau khi việc nghiên cứu mô hình đã hoàn tất trước đó. Việc vận hành mô hình với chuỗi số liệu mới để đánh giá mức độ chính xác tiên đoán đầu ra. Có thể có những thay đổi yếu tố vật lý như địa hình, độ che phủ mặt đất, thay đổi khi sử dụng nguồn nước và các tài nguyên khác làm các thông số mô hình đã nghiên cứu trước đó không còn chính xác nữa hay xuất hiện những khác biệt có ý nghĩa. • Khi mô hình cũ không còn thỏa mãn kết quả sự tiên đoán, nhất thiết phải hiệu chỉnh và kiểm nghiệm lại các thông số hoặc phải thay đổi giả thiết, thuật tính toán, và thậm chí thay đổi cấu trúc, khái niệm mô hình. Bài giảng môn học MÔ HÌNH HÓA MÔI TRƯỜNG Trường Đại học Cần Thơ ----------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------- TS. Lê Anh Tuấn 39 Chương 5. ỨNG DỤNG MÔ HÌNH HÓA MÔI TRƯỜNG 5.1 Sơ đồ phát triển và ứng dụng mô hình Hình 5.1 là sơ đồ tổng quát cho các bước hoàn chỉnh việc phát triển và ứng dụng một mô hình. Trong đó 2 quá trình được xem là quan trọng là lập trình thuật toán và đánh giá kết quả của mô hình. Hình 5.1 Sơ đồ phát triển và ứng dụng mô hình Xác định mục tiêu của mô hình Lược khảo các tài liệu liên quan Khái quát hóa mô hình Hình thành thuật toán số Mã hóa mô hình Hợp lý hóa mã số Phân tích độ nhạy Thử nghiệm và đánh giá mô hình Ứng dụng mô hình Trình bày kết quả Hậu kiểm Thử mù Tái đánh giá tiến trình Hiệu chỉnh Kiểm nghiệm Giải thuật số Số liệu thực tế Số liệu thực tế Lập trình Đánh giá Bài giảng môn học MÔ HÌNH HÓA MÔI TRƯỜNG Trường Đại học Cần Thơ ----------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------- TS. Lê Anh Tuấn 40 ß Mô hình khí hậu toàn cầu Mô hình tài nguyên tiểu lục địa Mô hình môi trường lưu vực Mô hình dòng chảy sông ngòi Mô hình cân bằng nước tiểu vùng % Mô hình lan truyền ô nhiễm Mô hình biến đổi sinh thái vùng vq Mô hình môi trường và con người 5.2 Xu thế phát triển mô hình hóa môi trường theo quy mô không gian Các diễn biến trong chu trình thủy văn là một trong các yếu tố quan trọng của các quan hệ môi trường - sinh thái. Sự biến đổi khí hậu diễn ra liên tục từ mức toàn cầu đến mức vi khí hậu trong một không gian nhỏ đều có những quan hệ tương tác. Ảnh hưởng này đã được một số nhà thủy văn môi trường mô phỏng từ nhiều cấp qui mô không gian (Hình 5.2). Hình 5.2 Xu thế phát triển mô hình thủy văn môi trường theo quy mô không gian Bài giảng môn học MÔ HÌNH HÓA MÔI TRƯỜNG Trường Đại học Cần Thơ ----------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------- TS. Lê Anh Tuấn 41 5.3 Giới thiệu một số mô hình môi trường 5.3.1 Mô hình biến đổi khí hậu toàn cầu Biến đổi khí hậu toàn cầu đang là mốt vấn đề thời sự được nhiều khoa học trên thế giới quan tâm vì nó ảnh hưởng đến toàn bộ hoạt động sinh hoạt, sản xuất, sinh thái môi trường trên toàn cầu. Các mô hình nổi tiếng về khí hậu được phát triển từ Trung tâm Quốc gia về Nghiên cứu Khí quyển (the National Center for Atmospheric Research - NCAR) ở Boulder, Colorado, USA, Phòng Thí nghiệm Thủy Động lực học Địa Vật lý (the Geophysical Fluid Dynamics Laboratory) tại Princeton, New Jersey, Mỹ, Trung tâm Hadley về Nghiên cứu và Dự báo Khí hậu (the Hadley Centre for Climate Prediction and Research (in Exeter, UK), Viện Khí tượng học Max Planck (the Max Planck Institute for Meteorology) ở Hamburg, Germany. Chương trình Nghiên cứu Khí hậu Thế giới (The World Climate Research Programme - WCRP), của Tổ chức Khí tượng Thế giới (the World Meteorological Organization - WMO). Một số mô hình đã phát triển như: ¾ Bộ Mô hình Luân chuyển Tổng quan (General Circulation Models - GCMs), còn gọi là Bộ Mô hình Khí hậu Toàn cầu (Global Climate Models), là một mô hình máy tính chuyên dùng cho dự báo khí hậu toàn cầu, tìm hiểu khí hậu và phản ánh sự thay đổi khí hậu. Mô hình khởi thủy GCMs được 2 nhà khoa học Syukuro Manabe và Kirk Bryan từ Phòng Thí nghiệm Thủy Động lực học Địa Vật lý (Mỹ) phát triển. ¾ Mô hình Khí quyển Toàn cầu (Global Atmospheric Model - GAM) là một phần của bộ mô hình chuyên về khí hậu được phát triển từ các phương trình vi phân dựa vào các định luật vật lý, cơ học chất lưu và hóa học. Mô hình này tính toán tốc độ gió, chuyển hóa nhiệt, bức xạ mặt trời, độ ẩm tương đối và thủy văn nước mặt (Hình 5.3). ¾ Mô hình nghiên cứu tác động khí hậu khu vực PRECIS (Providing Regional Climates for Impact Studies) do Trung tâm Hadley về Nghiên cứu và Dự báo Khí hậu phát triển (Hình 5.4). Hình 5.3 Mô hình Khí quyển Toàn cầu Bài giảng môn học MÔ HÌNH HÓA MÔI TRƯỜNG Trường Đại học Cần Thơ ----------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------- TS. Lê Anh Tuấn 42 Hình 5.4 Kết quả dự báo sự gia tăng nhiệt độ toàn cầu từ PRECIS 5.3.2 Mô hình quản lý lưu vực Mô hình Quản lý Lưu vực (Watershed Management Model - WMM) được phát triển bởi nhà khoa học người Mỹ Camp Dresser and McKee (CDM). WMM phát triển chủ yếu để tính toán khả năng dung nạp chất ô nhiễm theo năm hoặc mùa theo dòng chảy tràn xuống lưu vực (Hình 5.5 và 5.6). Chương trình này hữu dụng cho các nhà quản lý chất lượng nước lưu vực. Hình 5.5 Trang chính mô hình WMM Bài giảng môn học MÔ HÌNH HÓA MÔI TRƯỜNG Trường Đại học Cần Thơ ----------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------- TS. Lê Anh Tuấn 43 Hình 5.6 Cấu trúc Mô hình Quản lý Lưu vực WMM 5.3.3 Bộ mô hình thủy lực - thủy văn MIKE MIKE là tên của bộ mô hình nổi tiếng của Viện Thủy lực Đan Mạch (Danish Hydrulics Institute - DHI) phát triển. Mô hình MIKE thực hiện tốt việc mô phỏng các bài toán liên quan đến thủy văn môi trường như: • Nghiên cứu xâm nhập mặn (Hình 5.7) • Nghiên cứu lũ lụt • Nghiên cứu diễn biến chất lượng nước trên hệ thống sông kênh. • Nghiên cứu xói lở và bồi lắng dòng sông. • Nghiên cứu quan hệ mưa - dòng chảy một lưu vực (Mô hình NAM, Hình 5.8) Bài giảng môn học MÔ HÌNH HÓA MÔI TRƯỜNG Trường Đại học Cần Thơ ----------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------- TS. Lê Anh Tuấn 44 1-1-1978 16-5-1979 27-9-1980 9-2-1982 24-6-1983 5-11-1984 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 [m^3/s] Hình 5.7 Ví dụ kết quả phần mềm MIKE 11 mô phỏng sự xâm nhập mặn ở ĐBSCL Hình 5.8 Mô hình NAM cho quan hệ mưa - dòng chảy lưu vực Bài giảng môn học MÔ HÌNH HÓA MÔI TRƯỜNG Trường Đại học Cần Thơ ----------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------- TS. Lê Anh Tuấn 45 5.3.4 Mô hình ô nhiễm môi trường sinh thái nước ngọt Mô hình AQUATOX (Release 2.2) là một phần mềm mô phỏng ảnh hưởng của các chất ô nhiễm lên hệ sinh thái nước ngọt (Hình 5.9) . Mô hình này là một cung cụ tốt cho các nhà nghiên cứu sinh thái nước ngọt, nhà thủy văn môi trường và quản lý tài nguyên thủy sản. Đây là mô hình miễn phí do Cục Bảo vệ Môi trường Mỹ phát triển. Phạm vi ứng dụng của AQUATOX gồm: • Phát triển mục tiêu dinh dưỡng định lượng theo điểm cuối sinh học mong muốn. • Đánh giá các yếu tố tạo stress do sự hủy hại sinh học quan trắc được. • Dự báo ảnh hưởng thuốc trừ sâu và độc chất hòa tan khác vào thủy sinh. • Đánh giá tiềm năng chịu đựng của hệ sinh thái đối với các loài xâm nhập. • Xác định ảnh hưởng của việc sử dụng đất lên thủy sinh. • Xác lập thời gian hồi phục của cá và cộng đồng động vất không xương sống sau khi giảm mức tải ô nhiễm. Hình 5.9 Mô hình khái niệm của AQUATOX về thay đổi nồng độ ở thủy vực Bài giảng môn học MÔ HÌNH HÓA MÔI TRƯỜNG Trường Đại học Cần Thơ ----------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------- TS. Lê Anh Tuấn 46 Tài liệu tham khảo Grayson, R. and Bloschl, G., 2000. Spatial Patterns in Catchment Hydrology: Observations and Modelling. Cambridge University Press, Cambridge. Hillel, D., 1986. Modelling in Soil Physics: A Critical Review. Future Developments in Soil Science Research. Soil Sci. Soc. Am., New Orleans. Hughes, J. P., Lettenmaier, D. P. and Guttorp, P., 1993. A stochastic approach for assessing the effect of changes in synoptic circulation patterns on gauge precipitation. Water Resour. Res. 29, 3303-3315. Popov, O. V., 1968. Underground flow into rivers. Gidrometeoizdat, Leningrad. Tim, U. S., 1995. Coupling vadose zone models with GIS:Emerging trends and potential bottlenecks. Proc.ASA-CSSA-SSSA Bouyoucos Conference: Applications of GIS toModeling Nonpoint-Source Pollutants in the Vadose Zone. ASA-CSSA-SSSA, Madison, Wisc. Woolhiser, D. A. and Brakensiek, D. L., 1982. Hydrologic System Synthesis. In: C. T. Haan, Johnson, H.P., Brakensiek, D.L. , (Ed.), Hydrologic Modeling of Small Watersheds. ASAE Monograph No. 5., St. Joseph, MI. Bài giảng môn học MÔ HÌNH HÓA MÔI TRƯỜNG Trường Đại học Cần Thơ ----------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------- TS. Lê Anh Tuấn 47 Phụ lục
File đính kèm:
- bai_giang_mo_hinh_hoa_moi_truong_le_anh_tuan.pdf