Bài giảng Tín hiệu và hệ thống - Chương 3: Biểu diễn tín hiệu tuần hoàn dùng chuỗi Fourier - Trần Quang Việt

Tóm tắt Bài giảng Tín hiệu và hệ thống - Chương 3: Biểu diễn tín hiệu tuần hoàn dùng chuỗi Fourier - Trần Quang Việt: ... (x(t),x(t)) x(t)x (t)dt= ∫ 2 1 t * t (f(t),x(t))= f(t)x (t)dt∫  Tích vô hướng của hai tín hiệu: 2 1 t * t (f(t),x(t))= f(t)x (t)dt∫ hai tín hiệu gọi là trực giao khi tích vô hướng bằng không, tích vô hướng được sử dụng rộng rãi trong phân tích và biểu diễn tín hiệu và  Hệ số tươ... tín hiệu f(t) 3Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 3.1. Tích vô hướng và phân tích tương quan tín hiệu  Ứng dụng của tính tương quan giữa hai tín hiệu: xử lý tín hiệu radar, sonar, thông tin số, và nhiều ứng dụng khác  Hàm tương quan giữa hai tín hiệu (tương...i là hàm tự tương quan: * f (t)= f ( )f( -t)dψ τ τ τ +∞ −∞ ∫ : năng lượng tín hiệu nếu f(t) là tín hiệu năng lượngf (t=0)ψ f (t)ψ : liên quan mật thiết với mật phổ năng lượng của tín hiệu  Mối liên hệ của hàm tương quan với tích chập: fx (t)=f(t) x( t)ψ ∗ − như vậy để tính hàm tương quan...

pdf4 trang | Chia sẻ: havih72 | Lượt xem: 197 | Lượt tải: 0download
Nội dung tài liệu Bài giảng Tín hiệu và hệ thống - Chương 3: Biểu diễn tín hiệu tuần hoàn dùng chuỗi Fourier - Trần Quang Việt, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
1Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
Ch-3: Biểu diễn tín hiệu tuần hoàn dùng chuỗi Fourier
Lecture-5 
3.1. Tích vô hướng và phân tích tương quan tín hiệu
3.2. Biểu diễn vectơ tín hiệu
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
3.1. Tích vô hướng và phân tích tương quan tín hiệu
 Biểu diễn gần đúng vectơ:
e
f

x

cx

1 21 2f =cx+e=c x+e =c x+e
      
e: min⇒

f cx⇒
 

1
c= f x
xx
⇒

 
 Biểu diễn gần đúng tín hiệu:
f

1e

x

1c x

f

2e

x

2c x

 Biểu diễn gần đúng f(t) theo x(t): 1 2f(t) cx(t); t t t≤ ≤
1 2f(t) cx(t), t t t
e(t)
0, otherwise
− ≤ ≤
⇒ = 

 Tìm c để sai số nhỏ nhất 
2
1
t 2
e t
E = |f(t) cx(t)| dt : min−∫
2Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
3.1. Tích vô hướng và phân tích tương quan tín hiệu
 Kết quả: 2
2 1
1
t
*
t t*
t
1
c= f(t)x (t)dt
x(t)x (t)dt ∫∫
1
= (f(t),x(t))(x(t),x(t))
Với: 2
1
t
*
t
(x(t),x(t)) x(t)x (t)dt= ∫
2
1
t
*
t
(f(t),x(t))= f(t)x (t)dt∫
 Tích vô hướng của hai tín hiệu: 2
1
t
*
t
(f(t),x(t))= f(t)x (t)dt∫
hai tín hiệu gọi là trực giao khi tích vô hướng bằng không, tích
vô hướng được sử dụng rộng rãi trong phân tích và biểu diễn tín
hiệu
và
 Hệ số tương quan giữa hai tín hiệu: *
n
f x
1C = f(t)x (t)dt
E E
+∞
−∞
∫
Ta có: , nếu Cn=-1 hai tín hiệu đối nghịch nhau, Cn=0 
hai tín hiệu độc lập nhau (trực giao), Cn=1 hai tín hiệu giống nhau.
n1 C 1− ≤ ≤
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
3.1. Tích vô hướng và phân tích tương quan tín hiệu
Ví dụ: tính hệ số tương quan Cn giữa x(t) với các tín hiệu f(t)
3Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
3.1. Tích vô hướng và phân tích tương quan tín hiệu
 Ứng dụng của tính tương quan giữa hai tín hiệu: xử lý tín hiệu
radar, sonar, thông tin số, và nhiều ứng dụng khác
 Hàm tương quan giữa hai tín hiệu (tương quan chéo)
Thực tế tín hiệu thu luôn bị trễ đi so với tín hiệu gốc, do vậy để so 
sánh tương quan người ta phải dùng tới hàm tương quan.
*
fx (t)= f ( )x( -t)dψ τ τ τ
+∞
−∞
∫
fx 0max[ (t)]: t=tψ
Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
3.1. Tích vô hướng và phân tích tương quan tín hiệu
 Trong trường hợp f(t) và x(t) là như nhau người ta gọi là hàm tự
tương quan:
*
f (t)= f ( )f( -t)dψ τ τ τ
+∞
−∞
∫
: năng lượng tín hiệu nếu f(t) là tín hiệu năng lượngf (t=0)ψ
f (t)ψ : liên quan mật thiết với mật phổ năng lượng của tín hiệu
 Mối liên hệ của hàm tương quan với tích chập:
fx (t)=f(t) x( t)ψ ∗ −
như vậy để tính hàm tương quan ta có thể tính tương tự tích chập
dùng biểu thức trên
4Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11
3.2. Biểu diễn vectơ tín hiệu
 Không gian tín hiệu trực giao:
 {x1(t), x2(t),,xN(t)} trực giao trong khoảng [t1, t2] nếu:
2
1
t
*
m n m nt
n
0 m n(x (t), x (t))= x (t)x (t)dt=
E m=n
≠


∫
 Nếu En=1 với mọi n  không gian tín hiệu trực chuẩn
 Biểu diễn tín hiệu trong không gian tín hiệu trực giao:
N
1 1 2 2 N N n n
n=1
f(t) c x (t)+c x (t)+...+c x (t)= c x (t)∑
N
n n
n=1
e(t)=f(t) c x (t) : min−∑ 2
1
t
*
n nt
n
1
c = f(t)x (t)dt
E ∫
N
2
e f n n
n=1
min{E }=E c E−∑ emin{E }=0:N=∞
n n 1 2
n=1
f(t)= c x (t); t t t
∞
≤ ≤∑ (Dấu “=” đúng về mặt NL)

File đính kèm:

  • pdfbai_giang_tin_hieu_va_he_thong_chuong_3_bieu_dien_tin_hieu_t.pdf