Dạy toán ở tiểu học theo hướng phát triển năng lực người học

Tóm tắt Dạy toán ở tiểu học theo hướng phát triển năng lực người học: ... lợi để phát triển cho người học qua việc tiếp nhận khái niệm, quy tắc toán học và đặc biệt là qua giải toán. - NL mô hình hóa hay còn gọi là NL toán học hóa tình huống thực tiễn là khả năng chuyển hóa một vấn đề thực tế sang một vấn đề toán học bằng cách thiết lập và giải quyết các ... hỏi lớn của bài học. Câu hỏi nêu vấn đề cần đảm bảo yêu cầu phù hợp với trình độ, gây mâu thuẫn nhận thức và kích thích tính tò mò, thích tìm tòi của học sinh nhằm chuẩn bị tâm thế cho các em trước khi khám phá, lĩnh hội kiến thức. Giáo viên phải dùng câu hỏi mở, không được dùng câu...hình tròn cầm trên tay.  Học sinh còn lại nêu kết quả tính chu vi của hình tròn đó. - Nhận xét, đánh giá. 2. Bài mới: Bước 1. Tình huống xuất phát và nêu vấn đề - Yêu cầu học sinh xác định phần diện tích hình tròn (tấm bìa). (Cho học sinh lấy ra hình tròn từ đồ dùng học tập và chỉ cho n...

pdf8 trang | Chia sẻ: havih72 | Lượt xem: 212 | Lượt tải: 0download
Nội dung tài liệu Dạy toán ở tiểu học theo hướng phát triển năng lực người học, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
a của cuộc 
sống. (Nguyễn Công Khanh, 2012). 
 NL là khả năng vận dụng đồng bộ 
các kiến thức, kĩ năng, thái độ, phẩm chất 
đã tích lũy được để ứng xử, xử lí tình 
huống hay để giải quyết vấn đề một cách 
có hiệu quả. (Lê Đức Ngọc, 2014). 
Vậy, bản chất của NL là khả năng 
huy động tổng hợp các kiến thức, kĩ năng 
và các thuộc tính tâm lí cá nhân khác như 
hứng thú, niềm tin, ý chí để thực hiện 
thành công một công việc trong bối cảnh 
nhất định. Biểu hiện của NL là biết sử 
dụng các nội dung và các kĩ thuật trong 
một tình huống có ý nghĩa, chứ không 
tiếp thu lượng tri thức rời rạc. 
2. Năng lực toán học cần hình thành 
và phát triển cho học sinh tiểu học 
2.1. Năng lực chung và năng lực đặc 
thù 
NL chung là những NL cơ bản, 
thiết yếu hoặc cốt lõi làm nền tảng cho 
mọi hoạt động của con người trong cuộc 
sống và lao động nghề nghiệp. Tại Hội 
thảo Những nội dung chính của Chương 
trình giáo dục phổ thông tổng thể trong 
chương trình giáo dục phổ thông mới 
(12-13/4/2015) đã xác định 8 NL chung, 
đó là: NL tự học, NL giải quyết vấn đề và 
sáng tạo, NL ngôn ngữ và giao tiếp, NL 
hợp tác, NL tính toán, NL sử dụng công 
nghệ thông tin và truyền thông, NL thẩm 
mĩ và NL thể chất. Các NL này được 
hình thành và phát triển dựa trên bản 
năng di truyền của con người, quá trình 
giáo dục và trải nghiệm trong cuộc sống; 
đáp ứng yêu cầu của nhiều loại hình hoạt 
động khác nhau. 
NL đặc thù là những NL được hình 
thành và phát triển trên cơ sở các NL 
chung theo định hướng chuyên sâu, riêng 
biệt trong các loại hình hoạt động, công 
việc hoặc tình huống, môi trường đặc thù, 
cần thiết cho những hoạt động chuyên 
biệt, đáp ứng yêu cầu hạn hẹp hơn của 
một hoạt động như Toán học, Âm nhạc, 
Mĩ thuật, Thể thao 
NL chung và NL đặc thù đều được 
hình thành và phát triển thông qua các 
môn học, hoạt động giáo dục; NL đặc thù 
vừa là mục tiêu vừa là “đơn vị thao tác” 
trong các hoạt động dạy học, giáo dục; 
góp phần hình thành và phát triển các NL 
chung. 
2.2. Năng lực toán học cần hình thành 
và phát triển cho học sinh tiểu học 
Theo V. A. Cruchetxki: “Những NL 
toán học được hiểu là những đặc điểm 
tâm lí cá nhân (trước hết là những đặc 
điểm của hoạt động trí tuệ) đáp ứng 
những yêu cầu của hoạt động học tập 
toán, và trong những điều kiện vững chắc 
như nhau thì là nguyên nhân của sự 
thành công trong việc nắm vững một 
cách sáng tạo toán học với tư cách là một 
môn học, đặc biệt nắm vững tương đối 
nhanh, dễ dàng, sâu sắc những kiến thức, 
kĩ năng, kĩ xảo trong lĩnh vực Toán học” 
[4, tr.13]. 
Theo Đỗ Tiến Đạt và nhóm nghiên 
cứu Viện Khoa học giáo dục Việt Nam 
(2012), có nhiều cách liệt kê NL được 
hình thành và phát triển qua học tập toán 
do xuất phát từ những góc độ khác nhau. 
Đồng quan điểm trên, chúng tôi xác định 
những NL đặc thù của môn Toán, đó là: 
- NL tư duy là tổng hợp những khả 
TẠP CHÍ KHOA HỌC ĐHSP TPHCM Nguyễn Thị Kim Thoa 
_____________________________________________________________________________________________________________ 
91 
năng ghi nhớ, tái hiện, trừu tượng hóa, 
khái quát hóa, tưởng tượng, suy luận - 
giải quyết vấn đề, xử lí và linh cảm trong 
quá trình phản ánh, phát triển tri thức và 
vận dụng chúng vào thực tiễn. [7] 
NL tư duy của học sinh tiểu học 
trong quá trình học toán thể hiện qua các 
thao tác chủ yếu như: phân tích và tổng 
hợp, so sánh và tương tự, đặc biệt hóa và 
khái quát hóa..., bước đầu chú ý đến NL 
tư duy logic trong suy luận tiền chứng 
minh; các NL tư duy phê phán và sáng 
tạo, cũng như các yếu tố dự đoán, tìm tòi 
kể cả trực giác toán học và tưởng tượng 
không gian. 
- NL giải quyết vấn đề là khả năng cá 
nhân sử dụng hiệu quả các quá trình nhận 
thức, hành động và thái độ, động cơ, xúc 
cảm để giải quyết những tình huống có 
vấn đề mà ở đó không có sẵn quy trình, 
thủ tục, giải pháp thông thường. 
Đây là một trong những NL mà 
môn Toán có nhiều thuận lợi để phát 
triển cho người học qua việc tiếp nhận 
khái niệm, quy tắc toán học và đặc biệt là 
qua giải toán. 
- NL mô hình hóa hay còn gọi là NL 
toán học hóa tình huống thực tiễn là khả 
năng chuyển hóa một vấn đề thực tế sang 
một vấn đề toán học bằng cách thiết lập 
và giải quyết các mô hình toán học, thể 
hiện và đánh giá lời giải trong ngữ cảnh 
thực tế. 
- NL giao tiếp toán học là khả năng 
sử dụng các dạng ngôn ngữ nói, viết và 
biểu diễn toán học để làm thuyết trình và 
giải thích làm sáng tỏ vấn đề toán học. 
NL giao tiếp liên quan tới việc sử dụng 
ngôn ngữ toán học (chữ, kí hiệu, biểu đồ, 
đồ thị, các liên kết logic...) kết hợp với 
ngôn ngữ thông thường. NL này được thể 
hiện qua việc hiểu các văn bản toán học, 
đặt câu hỏi, trả lời câu hỏi, lập luận khi 
giải toán... 
- NL sử dụng các công cụ, phương 
tiện học toán (bao gồm các phương tiện 
thông thường và bước đầu làm quen với 
sử dụng công nghệ thông tin). 
3. Các nguyên tắc cơ bản trong dạy 
Toán theo hướng phát triển năng lực 
học sinh tiểu học 
Mỗi một hoạt động dạy học khi 
được thực hiện cần dựa trên các nguyên 
tắc nhất định nào đó. Trên cơ sở vận 
dụng lí thuyết cân bằng của Piaget và 
vùng phát triển gần của Vygotsky, việc 
dạy học Toán ở tiểu học theo hướng phát 
triển NL học sinh cần dựa trên những 
nguyên tắc cơ bản sau đây: 
- Học sinh phải được học thông qua 
việc quan sát các sự vật, hiện tượng của 
thế giới thực tại xảy ra hằng ngày, gần 
gũi với đời sống, dễ cảm nhận đối với các 
em; các em sẽ thực hành để qua đó thu 
nhận kiến thức mới. 
- Học sinh phải được trải qua quá 
trình tìm hiểu, suy nghĩ và lập luận; đưa 
ra tranh luận trước tập thể những ý nghĩ 
và lập luận của mình, từ đó các em tự 
điều chỉnh nhận thức và lĩnh hội tri thức 
mới. 
- Những hoạt động do giáo viên đề 
xuất cho học sinh được tổ chức theo một 
tiến trình dạy học nhằm nâng cao dần 
mức độ tiếp thu tự lực và sáng tạo của 
các em. Các hoạt động này phải làm cho 
các nội dung học tập được nâng cao lên 
và dành phần lớn hoạt động ở trường cho 
TẠP CHÍ KHOA HỌC ĐHSP TPHCM Số 6(71) năm 2015 
_____________________________________________________________________________________________________________ 
92 
sự tự chủ của học sinh. 
- Qua các hoạt động, học sinh chiếm 
lĩnh dần dần các khái niệm toán học và kĩ 
năng thực hành, kèm theo đó là sự củng 
cố và phát triển ngôn ngữ viết và nói. 
Khuyến khích các em ghi chép theo cách 
thức và ngôn ngữ của riêng mình (không 
bắt buộc). 
4. Tổ chức hoạt động dạy học Toán 
ở tiểu học theo hướng phát triển NL 
người học 
4.1. Cơ sở sư phạm của tiến trình dạy 
học 
Trên cơ sở nghiên cứu lí luận và 
thực tiễn, chúng tôi đề xuất một tiến trình 
dạy học ưu tiên xây dựng những tri thức 
bằng khai thác, thử nghiệm và thảo luận 
nhằm phát triển tối đa NL học sinh trong 
dạy học Toán. 
Học sinh tự mình thực hiện hoạt 
động thực hành với các công cụ, phương 
tiện học tập, tự suy nghĩ và thảo luận để 
lĩnh hội kiến thức cho chính mình. 
Học sinh học tập nhờ hành động, 
cuốn hút mình trong hành động; Học sinh 
học tập tiến bộ dần bằng cách tự nghi 
vấn, bằng hỏi đáp với các học sinh cùng 
lớp (theo nhóm làm việc 2 người hoặc 
với nhóm lớn), bằng cách trình bày quan 
điểm cá nhân của mình, đối lập với quan 
điểm của bạn và về các kết quả thực hành 
để kiểm tra sự đúng đắn của nó. 
Từ một câu hỏi của học sinh, tùy 
theo tình hình thực tế giáo viên có thể gợi 
ý học sinh đề xuất những tình huống cho 
phép các em tìm tòi một cách có lí lẽ, 
hướng dẫn học sinh chứ không làm thay. 
Giáo viên giúp đỡ học sinh làm sáng tỏ 
và thảo luận quan điểm của mình, đồng 
thời chú ý tuân thủ việc nắm bắt ngôn 
ngữ, cho học sinh phát biểu những kết 
luận có ý nghĩa từ các kết quả thu được, 
đối chiếu chúng với các kiến thức khoa 
học, giáo viên điều hành hướng dẫn học 
sinh tập luyện để tiến bộ dần. 
4.2. Đề xuất tiến trình dạy học 
Bước 1. Tình huống xuất phát/ 
câu hỏi nêu vấn đề 
Tình huống xuất phát hay tình 
huống nêu vấn đề là một tình huống do 
giáo viên chủ động đưa ra như là một 
cách dẫn nhập vào bài học. Tình huống 
xuất phát phải ngắn gọn, gần gũi dễ hiểu 
đối với học sinh. Tình huống xuất phát 
nhằm lồng ghép câu hỏi nêu vấn đề. Tình 
huống xuất phát càng rõ ràng thì việc dẫn 
nhập cho câu hỏi nêu vấn đề càng dễ. 
Tuy nhiên có những trường hợp không 
nhất thiết phải có tình huống xuất phát 
mới đề xuất được câu hỏi nêu vấn đề (tùy 
vào từng kiến thức và từng trường hợp cụ 
thể). 
Câu hỏi nêu vấn đề là câu hỏi lớn 
của bài học. Câu hỏi nêu vấn đề cần đảm 
bảo yêu cầu phù hợp với trình độ, gây 
mâu thuẫn nhận thức và kích thích tính tò 
mò, thích tìm tòi của học sinh nhằm 
chuẩn bị tâm thế cho các em trước khi 
khám phá, lĩnh hội kiến thức. Giáo viên 
phải dùng câu hỏi mở, không được dùng 
câu hỏi đóng (trả lời có hoặc không) đối 
với câu hỏi nêu vấn đề. Câu hỏi nêu vấn 
đề càng đảm bảo các yêu cầu nêu ra ở 
trên thì ý đồ dạy học của giáo viên càng 
dễ thực hiện thành công. 
Bước 2. Giúp học sinh bộc lộ ý 
tưởng ban đầu 
Hình thành ý tưởng ban đầu của 
TẠP CHÍ KHOA HỌC ĐHSP TPHCM Nguyễn Thị Kim Thoa 
_____________________________________________________________________________________________________________ 
93 
học sinh là bước quan trọng của quá trình 
dạy học theo hướng phát triển NL. Bước 
này khuyến khích học sinh nêu những 
suy nghĩ, nhận thức ban đầu của mình 
trước khi được học kiến thức. Để hình 
thành ý tưởng ban đầu, giáo viên có thể 
yêu cầu học sinh nhắc lại kiến thức cũ đã 
học có liên quan đến kiến thức mới của 
bài học. Khi yêu cầu học sinh trình bày ý 
tưởng ban đầu, giáo viên có thể yêu cầu 
nhiều hình thức biểu hiện của học sinh, 
có thể là bằng lời nói (thông qua phát 
biểu cá nhân), bằng cách viết hay vẽ để 
biểu hiện suy nghĩ. 
Bước 3. Đề xuất phương án thực 
hành/ giải quyết vấn đề 
Từ những khác biệt và phong phú 
về ý tưởng ban đầu của học sinh, giáo 
viên giúp các em đề xuất các câu hỏi từ 
những sự khác biệt đó. Chú ý xoáy sâu 
vào những sự khác biệt liên quan đến 
kiến thức trọng tâm của bài học. 
Ở bước này, giáo viên cần khéo léo 
chọn lựa một số ý tưởng ban đầu khác 
biệt trong lớp để giúp học sinh so sánh, 
từ đó giúp học sinh đặt câu hỏi liên quan 
đến nội dung bài học. Đây là một bước 
khá khó khăn vì giáo viên cần phải chọn 
lựa các ý tưởng ban đầu tiêu biểu của học 
sinh một cách nhanh chóng theo mục 
đích dạy học, đồng thời linh hoạt điều 
khiển thảo luận của học sinh nhằm giúp 
học sinh đề xuất các câu hỏi từ những sự 
khác biệt đó theo ý đồ dạy học. 
Bước 4. Tiến hành giải quyết vấn 
đề 
Từ các phương án thực hành/ giải 
quyết vấn đề mà học sinh nêu ra, giáo 
viên khéo léo nhận xét và gợi ý để học 
sinh lựa chọn phương án tiến hành. Ưu 
tiên thực hiện các phương án thực hành 
trực tiếp trên vật thật. Một số trường hợp 
không thể tiến hành trên vật thật có thể 
sử dụng mô hình, hoặc cho học sinh quan 
sát tranh vẽ. 
Khi học sinh thực hành, giáo viên 
bao quát lớp, quan sát từng em/ nhóm. 
Nếu thấy học sinh hoặc nhóm nào làm sai 
yêu cầu thì giáo viên chỉ nhắc nhở riêng, 
không nên thông báo chung cho cả lớp vì 
làm như vậy sẽ phân tán tư tưởng và ảnh 
hưởng đến công việc của các học sinh/ 
nhóm khác. 
Bước 5. Kết luận, hợp thức hóa 
kiến thức 
Sau khi thực hiện hoạt động thực 
hành giải quyết vấn đề, các câu hỏi dần 
dần được giải quyết, kiến thức được hình 
thành, tuy nhiên vẫn chưa có hệ thống 
hoặc chưa chuẩn xác một cách khoa học. 
Giáo viên có nhiệm vụ tóm tắt, kết luận 
và hệ thống lại để học sinh ghi vào vở coi 
như là kiến thức của bài học. 
Trước khi kết luận chung, giáo viên 
nên yêu cầu một vài ý kiến của học sinh 
cho kết luận sau khi thực hiện giải quyết 
vấn đề (rút ra kiến thức của bài học). 
4.3. Tổ chức hoạt động dạy học toán ở 
tiểu học theo hướng phát triển năng lực 
học sinh tiểu học 
Tùy theo từng mục tiêu phát triển NL 
và dạng bài học mà giáo viên thiết kế hoạt 
động dạy toán ở tiểu học theo các cách 
khác nhau. Do khuôn khổ của bài viết có 
giới hạn nên chúng tôi chỉ giới thiệu một 
thiết kế minh họa quy trình nêu trên: 
TẠP CHÍ KHOA HỌC ĐHSP TPHCM Số 6(71) năm 2015 
_____________________________________________________________________________________________________________ 
94 
BÀI: DIỆN TÍCH HÌNH TRÒN (Toán 5, tr.99) 
I. Mục tiêu 
Sau khi học xong bài này học sinh đạt được các yêu cầu sau: 
- Có biểu tượng về diện tích hình tròn, nắm vững quy tắc tính diện tích hình tròn và công thức. 
- Vận dụng quy tắc vào việc tính diện tích các hình tròn có số đo (bán kính, đường kính, 
chu vi) cho trước. 
- Tích cực hợp tác trong nhóm, cẩn thận và sáng tạo trong thực hành. 
II. Chuẩn bị 
Giáo viên: Các hình tròn bằng giấy bìa cùng kích thước; Giấy A3, bút dạ. 
Học sinh: Vở ghi chép; thước, kéo... 
III. Các hoạt động dạy học chủ yếu (chỉ trình bày phần tiến trình dạy học) 
1. Khởi động: 
- Đưa hình tròn bằng bìa có bán kính 20cm và gọi 2 HS lên bảng: 
 Yêu cầu 1 học sinh cầm hình tròn chỉ rõ: đường tròn và nêu cách tính chu vi của 
hình tròn cầm trên tay. 
 Học sinh còn lại nêu kết quả tính chu vi của hình tròn đó. 
- Nhận xét, đánh giá. 
2. Bài mới: 
Bước 1. Tình huống xuất phát và nêu vấn đề 
- Yêu cầu học sinh xác định phần diện tích hình tròn (tấm bìa). (Cho học sinh lấy ra hình 
tròn từ đồ dùng học tập và chỉ cho nhau cùng thấy diện tích hình tròn. Giáo viên chọn một học 
sinh cầm hình tròn lên bảng và chỉ ra phần diện tích hình tròn cho cả lớp cùng xem). Có thể 
cho học sinh nhận diện diện tích hình tròn qua một số biểu diễn với các đồ vật khác. 
- Nêu vấn đề: “Các em đã biết chu vi hình tròn và cách tính chu vi hình tròn. Bây giờ làm 
thế nào để tính được diện tích hình tròn?”. 
Bước 2. Giúp học sinh bộc lộ ý tưởng ban đầu 
- Gợi ý học sinh: Chu vi hình tròn bằng bán kính nhân 2 rồi nhân với 3,14 hoặc đường 
kính nhân với 3,14. Vậy diện tích hình tròn có liên quan đến các số liệu: bán kính, đường kính, 
chu vi, số 3,14 hay không? 
- Học sinh đưa ra các ý tưởng ban đầu (hoạt động này diễn ra một cách tự nhiên trong 
suy nghĩ của học sinh, không nhất thiết phải diễn đạt bằng ngôn ngữ). Chẳng hạn: 
 “Diện tích hình tròn có bằng chu vi nhân với 3,14 hay không?” 
 Phải chăng diện tích hình tròn bằng bán kính nhân đường kính rồi nhân với 3,14? 
 Có khi nào “diện tích hình tròn bằng bán kính nhân bán kính rồi nhân với 3,14?” 
Bước 3. Đề xuất phương án tính diện tích hình tròn có bán kính 20cm 
- Gợi ý học sinh cách tiến hành: Nên chia hình tròn đã cho thành các phần bằng nhau. 
Cắt hình tròn để được các phần bằng nhau (theo đường kẻ đã phân chia) và ghép các mảnh đó 
lại thành hình có hình dạng của hình hình học quen thuộc đã biết cách tính diện tích. 
- Học sinh thảo luận để đưa ra phương án nên chia hình tròn thành mấy phần bằng nhau. 
Bước 4. Thực hành giải quyết vấn đề 
- Học sinh tiến hành các thao tác: 
 Cắt hình tròn thành các phần bằng nhau (6 phần, 8 phần, 12 phần, 16 phần) 
 Ghép các mảnh thành hình có dạng quen thuộc (hình chữ nhật, hình bình hành) 
TẠP CHÍ KHOA HỌC ĐHSP TPHCM Nguyễn Thị Kim Thoa 
_____________________________________________________________________________________________________________ 
95 
- Học sinh lập luận. 
Chẳng hạn với hình ảnh mô phỏng trên học sinh có thể đưa ra các lập luận như sau: 
 Hình sau khi ghép có dạng hình bình hành. 
 Diện tích hình bình hành là: S = a  h. 
 Hình vừa ghép được có chiều cao chính là bán kính của hình tròn, có đáy là nửa chu 
vi của hình tròn. 
 Bán kính hình tròn là 20cm, nửa chu vi bằng bán kính nhân 3,14. 
 Vậy diện tích hình tròn bán kính 20cm là: 20  20  3,14 = 1256 (cm2). 
Bước 5: Kết luận, hợp thức hóa kiến thức 
- Đại diện nhóm trình bày cách tiến hành và kết quả tính diện tích hình tròn bán kính 
20cm. 
- Nhận xét, chỉnh sửa ngôn từ, kiến thức nếu cần. 
- Cho học sinh dự đoán quy tắc tính diện tích hình tròn. 
- Giáo viên chốt quy tắc và ghi công thức. Học sinh ghi vở. 
Kết thúc phần hình thành kiến thức mới, tiếp theo giáo viên tổ chức cho học sinh thực 
hành bài tập ở sách giáo khoa và củng cố, dặn dò và nhận xét tiết học. 
 Phân tích các năng lực toán học 
được phát triển trong quá trình tổ 
chức bài học “Diện tích hình tròn” cho 
học sinh 
Hoạt động khởi động sẽ góp phần 
phát triển ở học sinh NL vận dụng trực 
tiếp công thức đã có vào một trường hợp 
cụ thể (tính được chu vi hình tròn cầm 
trên tay). Ngoài ra, hoạt động này cũng 
liên quan đến NL giao tiếp toán học của 
học sinh (nêu được cách tính chu vi của 
hình tròn và số đo chu vi hình tròn đang 
cầm trên tay). 
Hoạt động ở bước 1 giúp học sinh 
phát triển NL mô hình hóa toán học. Với 
học sinh tiểu học, từ một tình huống thực 
tiễn (diện tích tấm bìa) các em chuyển 
hóa sang mô hình toán học “diện tích 
hình tròn”, giải quyết nó bằng hành động 
“sờ tay vào toàn bộ bề mặt của tấm bìa” 
để có biểu tượng diện tích hình tròn, nhận 
biết diện tích của một số đồ vật có dạng 
hình tròn. 
Hoạt động ở bước 2 sẽ giúp phát 
triển ở học sinh NL tư duy toán học. Học 
sinh sẽ phải phân tích, so sánh, phán đoán 
và kể cả đặt ra các giả thuyết có tính phê 
phán về những hoài nghi của mình: 
“Diện tích hình tròn có bằng chu vi nhân 
với 3,14 hay không?” 
Hoạt động ở bước 3 và bước 4 sẽ 
giúp phát triển NL giao tiếp toán học 
(thảo luận cách chia, lựa chọn phương án 
giải quyết và biểu diễn trực quan các 
mảnh ghép), NL giải quyết vấn đề (tính 
được diện tích tấm bìa hình tròn) và NL 
TẠP CHÍ KHOA HỌC ĐHSP TPHCM Số 6(71) năm 2015 
_____________________________________________________________________________________________________________ 
96 
sử dụng công cụ, phương tiện học toán 
(sử dụng khéo léo, hợp lí dụng cụ để chia 
hình tròn). 
Hoạt động ở bước 5 sẽ giúp học 
sinh phát triển các NL tư duy toán học, 
mô hình hóa toán học và giao tiếp toán 
học. Điều này được thể hiện qua cách mà 
các em loại bỏ dấu hiệu không bản chất 
(tấm bìa, con số cụ thể) mà giữ lại yếu tố 
bản chất của toán học (hình tròn, số đo 
bán kính) để khái quát thành quy tắc tính 
diện tích của hình tròn và biểu diễn bằng 
công thức. 
Tóm lại, dạy học toán ở tiểu học 
theo hướng phát triển NL người học là 
một hoạt động nghệ thuật mà giáo viên 
vừa là nhà biên kịch vừa là diễn viên. 
Giáo viên phải không ngừng nghiên cứu, 
đổi mới phương pháp dạy học nhằm giúp 
học sinh kiến tạo tri thức của cho chính 
mình một cách tích cực, chủ động và 
sáng tạo. Giáo viên cần xây dựng một 
môi trường học tập mà ở đó người học có 
cơ hội được quan sát, được thực hành trải 
nghiệm dựa trên vốn kiến thức, kinh 
nghiệm đã có của bản thân để giải quyết 
các vấn đề đặt ra trong quá trình học toán 
và trong đời sống thực tiễn. Với những 
trải nghiệm đó học sinh không những 
được phát triển các NL chung và NL toán 
học mà còn hình thành ở các em sự tự tin 
vào kết quả học tập của chính mình. 
TÀI LIỆU THAM KHẢO 
1. Bernd Meier, Nguyễn Văn Cường (2014), Lí luận dạy học hiện đại – Cơ sở đổi mới 
mục tiêu, nội dung và phương pháp dạy học, Nxb Đại học Sư phạm, Hà Nội. 
2. Bộ Giáo dục và Đào tạo (2014), Dự thảo Đề án xây dựng, triển khai chương trình và 
sách giáo khoa Giáo dục phổ thông sau 2015. 
3. Đỗ Tiến Đạt (2013), “Cơ sở khoa học của việc xây dựng Chuẩn giáo dục phổ thông”, 
Kỉ yếu Hội thảo “Một số vấn đề chung về xây dựng chương trình Giáo dục phổ 
thông sau năm 2015”, Hà Nội. 
4. Krutecxki V. A (1973), Tâm lí năng lực Toán học của học sinh, Nxb Giáo dục Hà 
Nội. 
5. Nguyễn Công Khanh (chủ biên), Đào Thị Oanh, Lê Mỹ Dung (2014), Kiểm tra đánh 
giá trong giáo dục, Nxb Đại học Sư phạm, Hà Nội. 
6. Trần Kiều và nhóm nghiên cứu (2012), Về mục tiêu môn Toán trong trường phổ 
thông Việt Nam, Báo cáo tại Hội thảo Việt Nam – Đan Mạch, Hà Nội. 
7.  
(Ngày Tòa soạn nhận được bài: 28-4-2015; ngày phản biện đánh giá: 06-5-2015; 
ngày chấp nhận đăng: 05-6-2015) 

File đính kèm:

  • pdfday_toan_o_tieu_hoc_theo_huong_phat_trien_nang_luc_nguoi_hoc.pdf