Giáo trình Lý thuyết thông tin - Lê Quyết Thắng

Tóm tắt Giáo trình Lý thuyết thông tin - Lê Quyết Thắng: ...Văn Hiếu. 15 Giáo trình: Lý thuyết thông tin. Một phân phối xác suất càng lệch nhiều (có xác xuất rất nhỏ và rất lớn) thì tính không chắc chắn càng ít và do đó sẽ có một lượng tin chưa biết càng nhỏ so với phân phối xác suất đều hay lượng tin chắc chắn của nó càng cao. Khái niệm entropy T...tại mỗi nút (trừ nùt gốc) đều có khả năng được chọn là từ mã. Như vậy, ta tiến hành chọn các từ mã cho bảng mã tức thời với qui tắc là: một nút nào đó được chọn để gán một từ mã thì tất cả các nút kề sau nút gán từ mã phải được xóa. Cụ thể như sau: Biên soạn: TS. L ê Quy ết Thắng, ThS. Phan Tấ...i n bit khi được truyền tuần tự từng bit có thể sai e bit. Vấn đề đặt ra là khoáng cách (Hamming) giữa các từ mã và sai số e quan hệ với nhau như thế nào để có thể phân biệt tốt nhất đồng thời tất cả các từ mã? Bổ đề sau xác định quan hệ này. Bổ đề: Xét bộ mã W={w1, w2, , ws} gồm có s từ mã ...

pdf95 trang | Chia sẻ: havih72 | Lượt xem: 462 | Lượt tải: 0download
Nội dung tài liệu Giáo trình Lý thuyết thông tin - Lê Quyết Thắng, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ông tin khác 
nhau có thể có là 2m) 
Vậy chu kỳ của thanh ghi là số xung nhịp đồng hồ để thanh ghi lặp lại trạng thái ban đầu. Nghĩa là 
nếu x(0)≠0 và ∃ n>0 sao cho x(n) = x(0) thì ta nói n là chu kỳ của thanh ghi. 
Lưu ý: 
Cách viết biểu diễn nhị phân cho giá trị của x(i) theo thứ tự từ trên xuống (theo cột), tương ứng với 
viết từ trái sang phải (theo dòng). Ví dụ: biểu diễn nhị phân của x(i) = 3 có m = 3 bit như sau: 
 Viết theo dòng: x(i) = 011 (viết từ trái sang phải) 
 Viết theo cột: (viết từ trên xuống) 
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜
⎝
⎛
=
1
1
0
 x (i)
Ví dụ tìm chu kỳ của thanh ghi 
Cho thanh ghi lui từng bước như hình sau: 
 + F3 F1 F2 F0 
Từ thanh ghi ta có: m=4, a0=1, a1=0, a2=1, a3=0. 
Ma trận đặc trưng của thanh ghi: T= 
⎥⎥
⎥⎥
⎦
⎤
⎢⎢
⎢⎢
⎣
⎡
0101
1000
0100
0010
Biên soạn: TS. L ê Quy ết Thắng, ThS. Phan Tấn Tài & Ks. Dương Văn Hiếu. 81
Giáo trình: Lý thuyết thông tin. 
Đặc giá trị khởi tạo của thanh ghi x(0)=1= = 
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
3
2
1
0
x
x
x
x
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
1
0
0
0
Tìm chu kỳ: 
X(1)=T.x(0)= ⇒ x
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
0
1
0
0
(2)=T.x(1)= ⇒ x
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
1
0
1
0
(3)=T.x(2)= 
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
0
1
0
1
⇒ x(4)=T.x(3)= ⇒ x
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
0
0
1
0
(5)=T.x(4)= ⇒ x
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
0
0
0
1
(6)=T.x(5)= = x
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
1
0
0
0
(0)
Tương tự: 
+ Khi chọn x(0) = 3 thi ta cũng có chu kỳ n = 6. 
+ Khi chọn x(0) = 6 thì ta có chu kỳ n = 3. 
+ Khi chọn x(0) = 0 thì ta có chu kỳ n = 1. 
 Chu kỳ n=6 Chu kỳ n=6 Chu kỳ n=3 Chu kỳ n=1 14
 8 
 4 
 1 
7
3
 5 
 2 
10 
 0 
11 13 
6
1512 
 9 
Thanh ghi trên có 4 chu kỳ. 
Bài tập 
1. Tìm các chu kỳ của thanh ghi lui từng bước như hình sau: 
+ F2 F0F1F2
2. Tìm các chu kỳ của thanh ghi lui từng bước như hình sau: 
F2 F1 F0+ 
BÀI 5.8: MÃ XOAY VÒNG 
Mục tiêu 
Sau khi hoàn tất bài học này bạn có thể: 
Biên soạn: TS. L ê Quy ết Thắng, ThS. Phan Tấn Tài & Ks. Dương Văn Hiếu. 82
Giáo trình: Lý thuyết thông tin. 
- Biết cách xác định ma trận kiểm tra chẵn lẻ cho mã xoay vòng (hay còn gọi là mã 
vòng), 
- Hiểu định nghĩa mã xoay vòng, 
- Vận dụng xây dựng bộ mã xoay vòng, 
- Vận dụng phương pháp sinh nhanh bộ mã xoay vòng để sinh bộ mã kiểm tra chẵn lẻ. 
Ma trận kiểm tra chẵn lẻ mã xoay vòng 
Định nghĩa: ma trận kiểm tra chẵn lẻ được thiết kế từ thanh ghi lùi từng bước là ma trận có dạng 
sau: 
A=[x(0)| T x(0)|T2 x(0) ||Tn-1 x(0)] với n là chu kỳ của thanh ghi (n > m) 
Trong đó: 
- T là ma trận đặc trưng của thanh ghi. 
- x(0) ≠ 0: là giá trị khởi tạo của thanh ghi. 
- n : là chiều dài của từ mã và cũng là chu kỳ của thanh ghi. 
- m: là số bit kiểm tra hay số bit của thanh ghi. 
Ví dụ: xét lại ví dụ tìm chu kỳ thanh ghi, nếu chọn giá trị khởi tạo của thanh ghi là x(0) = 1 thì ta 
có ma trận kiểm tra với chu kỳ n=6 như sau: 
⎥⎥
⎥⎥
⎦
⎤
⎢⎢
⎢⎢
⎣
⎡
==
000101
001010
010100
101000
 ] x x x x x x[A (5)(4)(3)(2)(1)(0)
Định nghĩa mã xoay vòng 
Mã xoay vòng là mã kiểm tra chẵn lẻ được sinh ra từ ma trận kiểm tra chẵn lẻ ứng với chu kỳ n 
của thanh ghi lùi từng bước có dạng như: 
A=[x(0)| Tx(0)|T2x(0) ||Tn-1x(0) ] 
Ví dụ: xét lại ma trận kiểm tra chẵn lẻ ở trên 
⎥⎥
⎥⎥
⎦
⎤
⎢⎢
⎢⎢
⎣
⎡
=
000101
001010
010100
101000
A (chu kỳ n = 6) 
Ta có n = 6, m = 3, k = 2 ⇒ s = 2k = 22 = 4 từ mã. 
Áp dụng Phương pháp sinh mã nhanh bộ mã kiểm tra chẵn lẻ ta có bộ mã kiểm tra chẵn lẻ gồm 4 
từ mã sau : w0 = 000000, w1 = 101010, w2 = 010101, w4 = 111111, đây chính là một trong các bộ 
mã xoay vòng sinh từ thanh ghi lùi từng bước nêu trên (Các bước sinh mã nhanh đề nghị các 
bạn tự làm) 
Phương pháp sinh nhanh bộ mã xoay vòng 
Cách sinh nhanh k từ mã độc lập tuyến tính của bộ mã vòng từ a0, a1, a2, , am-1: 
Bước 1: sinh mã xoay vòng đầu tiên 
 Sinh mã xoay vòng đầu tiên có dạng w1=a0a1a2am-1 100000 
 k-1 bit 0 
Bước 2: sinh k -1 từ mã độc lập tuyến tính còn lại 
Biên soạn: TS. L ê Quy ết Thắng, ThS. Phan Tấn Tài & Ks. Dương Văn Hiếu. 83
Giáo trình: Lý thuyết thông tin. 
w2= 0a0a1a2am-110000 (dịch w1 sang phải 1 bit). 
k-2 bit 0 
. 
wk= 00000a0a1a2am-11 (dịch từ wk-1 sang phải 1 bit). 
k-1 bit 0 
Bước 3: xác định các từ mã còn lại của bộ mã 
Các từ mã còn lại gồm (2k – k từ mã) được xác định bằng cách cộng tổ hợp của 2, 3, , k từ mã 
từ k từ mã độc lập tuyến tính ở trên. 
Ví dụ sinh nhanh bộ mã xoay vòng 
Cho thanh ghi lui từng bước như hình sau: 
 + F3 F1 F2 F0 
Từ thanh ghi, ta có: m=4, n=6, a0=1, a1=0, a2=1, a3=0. 
Bước 1: Sinh mã xoay vòng đầu tiên 
w1=101010 
 Bước 2: Sinh k -1 từ mã độc lập tuyến tính còn lại 
w2=010101 
 Bước 3: Xác định các từ mã còn lại của bộ mã 
 w3 =111111 (w1+w2), w0 =000000 (w1+w2 + w3) 
Bộ mã vòng vừa sinh là W={000000, 101010, 010101, 111111) 
Biên soạn: TS. L ê Quy ết Thắng, ThS. Phan Tấn Tài & Ks. Dương Văn Hiếu. 84
Giáo trình: Lý thuyết thông tin. 
Bài tập 
1. Cho thanh ghi lùi từng bước sau: 
- Tìm ma trận kiểm tra chẵn lẻ có số cột n > 4 
+ F0 F1 F2 
- Từ kết quả câu a, xác định bộ mã xoay vòng tương ứng. 
- Tìm bộ mã xoay vòng theo phương pháp sinh nhanh bộ mã xoay vòng 
2. Cho thanh ghi lùi từng bước sau: 
+ F3 F0 F1 F2 
- Tìm ma trận kiểm tra chẵn lẻ có số cột n > 4 
- Từ kết quả câu a, xác định bộ mã xoay vòng tương ứng. 
- Tìm bộ mã xoay vòng theo phương pháp sinh nhanh bộ mã xoay vòng. 
Biên soạn: TS. L ê Quy ết Thắng, ThS. Phan Tấn Tài & Ks. Dương Văn Hiếu. 85
Giáo trình: Lý thuyết thông tin. 
BÀI 5.9: ĐA THỨC ĐẶC TRƯNG CỦA THANH GHI 
Mục tiêu 
Sau khi hoàn tất bài học này bạn có thể: 
- Hiểu định nghĩa đa thức đặc trưng của thanh ghi, 
- Hiểu Quan hệ giữa chu kỳ n, đa thức đặc trưng và đa thức (xn + 1), 
- Vận dụng sinh thanh ghi lùi từng bước, 
- Làm cơ sở để vận dụng sinh bộ mã vòng. 
Định nghĩa đa thức đặc trưng của thanh ghi 
Định nghĩa: đa thức đặc trưng của thanh ghi có ma trận đặc trưng là T là đa thức có dạng 
gm(x)=a0 + a1x+ a2 x2+ +am-1xm-1 + xm. 
với a0, a1, a2,, am-1 là các công tắc của thanh ghi và m là số bit của thanh ghi 
Ví dụ: xét lại thanh ghi như hình sau: 
 + F3 F0 F1 F2 
a0 = 1, a1= 0, a2 = 1, a3 = 0 
Đa thức đặc trưng của thanh ghi có dạng: gm(x)=1 + x2 + x4. 
Quan hệ giữa chu kỳ n, đa thức đăc trưng và đa thức (xn + 1) 
Đa thức đặc trưng của thanh ghi gm(x)=a0 + a1x+ a2 x2+ +am-1xm-1 + xm luôn chia hết đa thức (xn 
+ 1). 
Ví dụ: xét lại thanh ghi lui từng bước như hình sau: 
+ F3 F0 F1 F2 
Từ thanh ghi ta có thể xác định các kết quả sau: 
- a0 = 1, a1= 0, a2 = 1, a3 = 0 
- Đa thức đặc trưng của thanh ghi có dạng: g4(x)=1 + x2 + x4. 
- Thanh ghi này có chu kỳ n = 6. 
Thực hiện phép chia đa thức (x6 + 1) : (1 + x2 + x4) = (x2 + 1) ⇒ chia hết. 
Ghi chú: phép toán trên đa thức nhị phân vẫn là phép toán Modulo 2. 
Ví dụ: xét lại thanh ghi lui từng bước như hình sau: 
+ F3 F0 F1 F2 
a0 = 1, a1= 0, a2 = 1, a3 = 0 
đa thức đặc trưng của thanh ghi có dạng: g4(x)=1 + x2 + x4. 
 thanh ghi này có chu kỳ n = 6 và (x6 + 1) : 1 + x2 + x4 = x2 + 1. 
Biên soạn: TS. L ê Quy ết Thắng, ThS. Phan Tấn Tài & Ks. Dương Văn Hiếu. 86
Giáo trình: Lý thuyết thông tin. 
Thủ tục sinh thanh ghi lùi từng bước 
Để sinh thanh ghi lùi từng bước với số bit là m và có chu kỳ n, ta có thể thực hiện theo các bước 
sau: 
Bước 1: xác định đa thức đặc trưng của thanh ghi 
- Tìm 2 đa thức gm(x)=a0 + a1x+ a2 x2+ +am-1xm-1 + xm 
và hk(x)=h0 + h1x+ h2x2 + +hk-1xk-1 + xk sao cho (xn + 1) = gm(x)* hk(x). 
- Nếu ∃ (xn + 1) = gm(x)* hk(x) thì ta chọn gm(x) làm đa thức đặc trưng cho thanh ghi (vì 
số bit kiểm tra của bộ mã là m) và thực hiện bước 2. 
- Ngược lại: không tồn tại thanh ghi theo yêu cầu. 
Bước 2: vẽ thanh ghi 
Từ gm(x)=a0 + a1x+ a2 x2+ +am-1xm-1 + xm ⇒ a0, a1, a2,, am-1 ⇒ thanh ghi có dạng: 
 + Fm-1 Fm-2 F1 F0 
am-1 a0 a1 am-2
Ví dụ minh họa 
Thiết kế thanh ghi có m=3 bit và chu kỳ n=7, ta thực hiện theo 2 bước sau: 
Bước 1: Xác định đa thức đặc trưng của thanh ghi 
Ta có (x7 + 1) : (1 + x2 + x3) = (1 + x2 + x3 + x4) 
Do m=3 nên chọn g3(x) = (1 + x2 + x3) làm đa thức đặc trưng của thanh ghi. 
Bước 2: Vẽ thanh ghi 
Từ g3(x) = (1 + x2 + x3) ta có, a0=1, a1=0, a2=1 
+ F0 F1 F2 
Bài tập 
1. Trong các thanh ghi sau đây, thanh ghi nào sinh ra bộ mã vòng có độ dài n=15 bit? 
(R1): 
+ F3 F0 F1 F2 
+ F3 F0 F1 F2 
+ F3 F0 F1 F2 
 (R2): 
 (R3): 
2. Nêu các bước cần thiết để thiết kế bộ mã xoay vòng độ dài 15 bit với số bit kiểm tra là 4. 
Vẽ sơ đồ thanh ghi dạng tổng quát. 
Biên soạn: TS. L ê Quy ết Thắng, ThS. Phan Tấn Tài & Ks. Dương Văn Hiếu. 87
Giáo trình: Lý thuyết thông tin. 
Bài 5.10: PHƯƠNG PHÁP SINH MÃ XOAY VÒNG 
Mục tiêu 
Sau khi hoàn tất bài học này bạn có thể: 
- Hiểu các phương pháp sinh mã vòng, 
- Biết bảng liệt kê một số đa thức đặc trưng, 
- Vận dụng để sinh mã vòng theo nhiều cách khách nhau. 
Đặt vấn đề 
Để sinh bộ mã kiểm tra chẵn lẻ, ta có thể dựa theo nhiều phương pháp khác nhau như: sinh mã 
dựa theo lý thuyết nhóm, mã Hamming,... Vấn đề đặt ra ở đây là làm sao để sinh bộ mã xoay vòng 
với độ dài n bit và m bit kiểm tra chẵn lẻ. Phương pháp sinh mã xoay vòng dựa trên lý thuyết về 
đa thức đặc trưng nhị phân của thanh ghi giúp ta có cái nhìn tổng quát về vấn đề sinh bộ mã xoay 
vòng theo nhiều cách khác nhau. 
Phương pháp sinh bảng mã xoay vòng 
Để sinh mã xoay vòng độ dài n bit với m bit kiểm tra và k bit thông tin, ta có thể thực hiện theo 
các bước sau: 
Bước 1: tìm 2 đa thức gm(x)=a0 + a1x+ a2 x2+ +am-1xm-1 + xm 
 và hk(x)=h0 + h1x+ h2x2 + +hk-1xk-1 + xk sao cho (xn + 1) = gm(x)* hk(x). 
 Nếu ∃ (xn + 1) = gm(x)* hk(x) thì chuyển sang bước 2 
 Ngược lại không thể sinh bộ mã vòng theo yêu cầu. 
Bước 2: ta có thể sinh bộ mã xoay vòng theo các cách như dưới đây: 
Cách 1: Chọn đa thức gm(x)=a0 + a1x+ a2 x2+ +am-1xm-1 + xm 
⇒ a0, a1, a2,, am-1 
⇒ thanh ghi ⇒ ma trận đặc trưng T 
⇒ chu kỳ n ⇒ ma trận kiểm tra chẵn lẻ A. 
⇒ Bộ mã xoay vòng. 
Cách 2: chọn đa thức gm(x)=a0 + a1x+ a2 x2+ +am-1xm-1 + xm 
⇒ a0, a1, a2,, am-1 
⇒ Sinh nhanh k từ mã độc lập tuyến tính với từ mã sinh độc lập tuyến tính đầu tiên có 
dạng: w1=a0a1a2am-1100000 ⇒ Bộ mã xoay vòng. 
 k-1 bit 0 
Cách 3: chọn hk(x)=h0 + h1x+ h2x2 + +hk-1xk-1 + xk làm đa thức sinh ma trận kiểm tra 
chẵn lẻ cho bộ mã vòng có dạng: 
⎟⎟
⎟⎟
⎟⎟
⎠
⎞
⎜⎜
⎜⎜
⎜⎜
⎝
⎛
−−−−−−
−−−−−−
−−−−−−−−−−−−−−
−−−−−−
−−−−−−
−
−
−
−
00001
00010
01000
10000
011
011
011
011
hhh
hhk
hhh
hhh
k
k
k
k
 m 
 (m-1) bits 
⇒ Sinh bộ mã xoay vòng theo Phương pháp sinh nhanh bộ mã xoay vòng. 
Biên soạn: TS. L ê Quy ết Thắng, ThS. Phan Tấn Tài & Ks. Dương Văn Hiếu. 88
Giáo trình: Lý thuyết thông tin. 
Nhận xét: kết quả theo 3 cách sinh bộ mã xoay vòng nói trên la như nhau (cho cùng bộ mã). 
Ví dụ minh họa 1 
Thiết kế thanh ghi và sinh ma trận kiểm tra chẵn lẻ. 
Chọn đa thức gm(x)= 1+x+x4 ⇒ a0 = 1, a1 = 1, a2 = 0, a3 = 0 
+ F3 F0 F1 F2 
Ma trận đặc trưng của thanh ghi: T= 
⎥⎥
⎥⎥
⎦
⎤
⎢⎢
⎢⎢
⎣
⎡
0011
1000
0100
0010
Tìm chu kỳ của thanh ghi: 
Chọn giá trị khởi tạo x(0)=1= 
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
1
0
0
0
x(1)=T.x(0)= ; x
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
0
1
0
0
(2)=Tx(1)= ; x
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
0
0
1
0
(3)=Tx(2)= ; x
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
1
0
0
1
(4)=Tx(3)= ; x
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
1
1
0
0
(5)=Tx(4)= 
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
0
1
1
0
x(6)=Tx(5)= ; x
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
1
0
1
1
(7)=Tx(6)= ; x
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
0
1
0
1
(8)=Tx(7)= ; x
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
1
0
1
0
(9)=Tx(8)= ; x
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
1
1
0
1
(10)=Tx(9)= 
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
1
1
1
0
x(11)=Tx(12)= ;x
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
1
1
1
1
(12)=Tx(11)= ;x
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
0
1
1
1
(13)=Tx(12)= ;x
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
0
0
1
1
(14)=Tx(13)= ; x
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
0
0
0
1
(15)=T.x(14) = = x
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
1
0
0
0
(0)
Ma trận kiểm tra chẳn lẻ : 
 A= 
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
000111101011001
001111010110010
011110101100100
111101011001000
⇒ Bộ mã xoay vòng vớin=14, m=4, k=11. 
Ví dụ minh họa 2 
Chọn đa thức gm(x)= 1+x+x4 ⇒ a0 = 1, a1 = 1, a2 = 0, a3 = 0. 
Biên soạn: TS. L ê Quy ết Thắng, ThS. Phan Tấn Tài & Ks. Dương Văn Hiếu. 89
Giáo trình: Lý thuyết thông tin. 
Bước 1: Sinh mã xoay vòng đầu tiên 
w1 =110010000000000 
 Bước 2: Sinh k -1 từ mã độc lập tuyến tính còn lại 
w2 =011001000000000 
w3 =001100100000000 
w4 =000110010000000 
w5 =000011001000000 
w6 =000001100100000 
w7 =000000110010000 
w8 =000000011001000 
w9 =000000001100100 
w10=000000000110010 
w11=000000000011001 
 Bước 3: Xác định các từ mã còn lại của bộ mã 
(215 - 11) từ mã còn lại được xác định bằng cách cộng tổ hợp 2, 3, 4,.., k = 11 từ 
mã từ k=11 từ mã độc lập tuyến tính. 
Ví dụ minh họa 3 
Chọn hk(x)= 1+ x + x2 + x3 +x5 + x7 + x8 + x11 làm đa thức sinh ma trận kiểm tra chẵn lẻ cho bộ mã 
vòng ⇒ h0 = 1, h1 = 1, h2 = 1, h3 = 1, h4 = 0, h5 = 1, h6 = 0, h7 = 1, h8 =1, h9 = 0, h10 = 0. 
 A= ⇒ Bộ mã xoay vòng 
⎟⎟
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜⎜
⎜
⎝
⎛
000111101011001
001111010110010
011110101100100
111101011001000
Bảng liệt kê một số đa thức đặc trưng 
M Đa thức M Đa thức 
3 1+x+x3 14 1+x+x6+x10+x14
4 1+x+x4 15 1+x+x15
5 1+x2+x5 16 1+x+x3+x12+x16
6 1+x+x6 17 1+x3+x7
7 1+x3+x7 18 1+x7+x18
8 1+x2+x3+x4+x8 19 1+x+x2+x5+x19
9 1+x4+x9 20 1+x3+x20
10 1+x3+x10 21 1+x2+x21
11 1+x2+x11 22 1+x+x22
12 1+x+x4+x6+x12 23 1+x3+x23
13 1+x+x3+x4+x13 24 1+x+x2+x7+x24
Bài tập 
1. Tìm bộ mã vòng có độ dài 7 bit. 
2. Tìm thanh ghi sinh bộ mã vòng có độ dài 15 bit. 
3. Tìm thanh ghi sinh bộ mã vòng có độ dài 31 bit. 
Biên soạn: TS. L ê Quy ết Thắng, ThS. Phan Tấn Tài & Ks. Dương Văn Hiếu. 90
Giáo trình: Lý thuyết thông tin. 
BÀI TẬP TỔNG HỢP 
Mục tiêu 
Sau khi hoàn tất bài học này bạn có thể: 
- Hiểu rõ hơn về nội dung môn học. 
- Vận dụng nội dung môn học để giải quyết một số bài tập tổng hợp. 
Bài 1 
Xét một mô hình chẩn đoán bệnh từ các triệu chứng: A, B và C; để chẩn đoán 1 trong 4 bệnh: 1, 
2, 3 và 4 với ma trận chẩn đoán (hay ma trận truyền tin). 
 Bệnh 
Triệu chứng 
1 2 3 4 
A 0,6 0,3 0 0,1 
B 0,2 0,6 0,2 0 
C 0 0 0,3 0,7 
Yêu cầu: 
Câu 1: Vẽ sơ đồ mô tả mô hình chẩn đoán bệnh trên và diễn giải các ý nghĩa của sơ đồ. 
Câu 2: Nếu phân phối của Triệu chứng có dạng: 
Triệu chứng A B C 
P 0,5 0,3 0,2 
Tính các lượng sau : 
¾ Lượng ngẫu nhiên (Entropy) của Triệu chứng . 
¾ Lượng ngẫu nhiên của Bệnh. 
¾ Lượng ngẫu nhiên của Bệnh khi biết Triệu chứng. 
¾ Lượng chẩn đoán đúng.(Lượng thông tin biết về Bệnh thông qua Triệu chứng) và tỷ lệ 
chẩn đoán đúng là bao nhiêu phần trăm. 
Câu 3: Bây giờ người ta sử dụng 2 bit để mã thông tin về Triệu chứng (có 1 triệu chứng dự trữ) và 
5 bit để mã các triệu chứng khi chẩn đoán bệnh trực tuyến. Mô tả các đoạn của dãy 5 bit trong 
phương pháp kiểm tra chẵn lẻ. 
Câu 4: Nếu sử dụng ma trận kiểm tra chẵn lẻ dạng: 
 1 1 1 0 1 
0 1 0 1 1 
1 0 0 1 1 
A = 
Tính các từ mã. 
Xây dựng Bộ sửa lỗi 1 bit dùng cho tự động sửa lỗi tối ưu trong quá trình chẩn đoán trực tuyến. 
Cho một ví dụ. 
Bài 2 
Xét một kênh truyền tin đặc biệt dạng : Truyền X Æ Nhận Y. 
Biên soạn: TS. L ê Quy ết Thắng, ThS. Phan Tấn Tài & Ks. Dương Văn Hiếu. 91
Giáo trình: Lý thuyết thông tin. 
Truyền một giá trị của X có thể nhận được nhiều giá trị khác nhau của Y với các xác suất khác 
nhau. Bảng xác suất truyền X và nhận các Y khác nhau được cho dưới đây: 
 Y 
X 
y1 y2 y3 y4 y5 y6
x0 0,6 0,1 0,1 0,05 0,05 0,1 
x1 0,1 0,05 0,6 0,1 0,1 0,05 
x2 0,05 0,1 0,1 0,05 0,6 0,1 
x3 0,1 0,05 0,05 0,1 0,1 0,6 
Yêu cầu: 
Câu 1: Vẽ sơ đồ mô tả kênh truyền tin trên và diễn giải các ý nghĩa của sơ đồ. 
Câu 2: Nếu phân phối của X có dạng : 
X x0 x1 x3 x4
P 0.5 0.25 0.15 0.1 
tính thông lượng về X truyền trên kênh. 
Câu 3: Phân phối của X cần có dạng như thế nào để thông lượng truyền trên kênh là lớn nhất. 
Tính dung lượng kênh truyền. 
Câu 4: Bây giờ người ta sử dụng 2 bit để mã thông tin về X và 4 bit để mã các giá trị truyền trên 
kênh. Mô tả các đoạn của dãy 4 bit trong phương pháp kiểm tra chẵn lẻ. 
Câu 5: Nếu sử dụng ma trận kiểm tra chẵn lẻ dạng: 
 1 1 1 0 
0 1 0 1 A = 
Tính các từ mã. 
Xây dựng Bộ sửa lỗi dùng cho tự động sửa lỗi tối ưu trong quá trình truyền tin. Cho một ví dụ. 
Bài 3 
Người ta cần đánh giá kênh truyền tin và chuẩn bị thực hiện truyền một loại tín hiệu đặc biệt: X = 
{x0, x1, x2, x3} 
Công việc đầu tiên là phải khảo sát kênh truyền. Kết quả khảo sát cho thấy: 
Kênh có thể truyền nhận được 8 giá trị khác nhau, để có khả năng phát hiện lỗi hoặc điều chỉnh 
lỗi. Ma trận truyền tin có dạng: 
 Y 
X 
y1 y2 y3 y4 y5 y6 y7 y8
x0 0,6 0,1 0,05 0,05 0,05 0,05 0,05 0,05 
x1 0,05 0,05 0,6 0,1 0,05 0,05 0,05 0,05 
x2 0,05 0,05 0,05 0,05 0,6 0,1 0,05 0,05 
x3 0,05 0,05 0,05 0,05 0,05 0,05 0,6 0,1 
Yêu cầu: 
Câu 1: Vẽ sơ đồ mô tả kênh truyền tin trên và diễn giải các ý nghĩa của sơ đồ. Nếu phân phối của 
X có dạng : 
X x0 x1 x3 x4
P 0.5 0.25 0.15 0.1 
tính thông lượng về X truyền trên kênh. 
Biên soạn: TS. L ê Quy ết Thắng, ThS. Phan Tấn Tài & Ks. Dương Văn Hiếu. 92
Giáo trình: Lý thuyết thông tin. 
Câu 2: Phân lớp các giá trị của Y về các lớp B0, B1, B2, và B3 dùng để giải mã tối ưu Y tốt nhất 
về các giá trị tương ứng của X. 
Câu 3 : Bây giờ người ta sử dụng 2 bit để mã thông tin về X và 4 bit để mã các giá trị truyền trên 
kênh. Mô tả các đoạn của dãy 4 bit trong phương pháp kiểm tra chẵn lẻ. 
Câu 4: Nếu sử dụng ma trận kiểm tra chẵn lẻ dạng: 
 1 0 0 1 
0 1 1 1 A = 
Tính các từ mã. 
Xây dựng Bộ sửa lỗi dùng cho tự động sửa lỗi tối ưu trong quá trình truyền tin. Cho một ví dụ. 
Bài 4 
Xét một mô hình chẩn đoán bệnh từ các triệu chứng: A, B và C; để chẩn đoán 1 trong 4 bệnh: 1, 
2, 3 và 4 với ma trận chẩn đoán (hay ma trận truyền tin) 
 Bệnh 
Triệu chứng 
1 2 3 4 
A 0,5 0,3 0 0,2 
B 0,1 0,2 0,7 0 
C 0 0,1 0,3 0,6 
Yêu cầu: 
Câu 1: Giả sử người ta biết thêm 3 triệu chứng gây bệnh khác đó là : D, E và F và muốn ghi lại 
các triệu chứng này thông qua bảng ký hiệu A = {+, - }. 
Hãy kiểm tra tính tách được của bảng mã sau : 
Triệu chứng : X A B C D E F 
Mã : W + -+ ++- --+- ++-+ -- 
Câu 2: Nếu các triệu chứng ở câu 1 có phân phối : 
Triệu chứng : X A B C D E F 
P 0.5 0.2 0.2 0.05 0.03 0.2 
Giử sử có một người bệnh với 1 trong 5 triệu chứng trên đến khám bệnh và bác sĩ sẽ hỏi bệnh với 
nguyên tắc, sao cho người bệnh chỉ trả lời bằng 2 câu : Đúng hoặc Sai. 
¾ Tìm phương pháp hỏi bệnh với số câu hỏi trung bình ít nhất. 
¾ Tính số câu hỏi trung bình. 
¾ Tính lượng ngẫu nhiên của Triệu chứng. 
¾ Nhận xét gì về số câu hỏi trung bình và lượng ngẫu nhiên của triệu chứng. 
Câu 3: Bây giờ sử dụng mô hình 3 triệu chứng {A, B, C} và 4 bệnh. Vẽ sơ đồ mô tả mô hình 
chẩn đoán bệnh và diễn giải các ý nghĩa của sơ đồ. 
Biên soạn: TS. L ê Quy ết Thắng, ThS. Phan Tấn Tài & Ks. Dương Văn Hiếu. 93
Giáo trình: Lý thuyết thông tin. 
Câu 4: Từ kết quả câu 3, người ta sử dụng 2 bit để mã thông tin về Triệu chứng (có 1 triệu chứng 
dự trữ) và 5 bit để mã các triệu chứng khi chẩn đoán bệnh trực tuyến. Mô tả các đoạn của dãy 5 
bit trong phương pháp kiểm tra chẵn lẻ. 
Câu 5: Nếu sử dụng ma trận kiểm tra chẵn lẻ dạng: 
1 1 1 0 1 
0 1 0 1 1 
1 0 0 1 1 
A = 
 Tính các từ mã. 
Biên soạn: TS. L ê Quy ết Thắng, ThS. Phan Tấn Tài & Ks. Dương Văn Hiếu. 94
Giáo trình: Lý thuyết thông tin. 
TÀI LIỆU THAM KHẢO 
12. G.J.ChaiTin, Algorithmic Information Theory, CamBridge University Express-1992. 
13. David J.C. Mackey, Information Theory, Infernce, and Learning Algorithms, CamBridge 
University Express-2003. 
14. Sanford Goldman, Information Theory. 
15.  
16.  
17.  
18.  
19.  
20.  
21.  
22.  
Biên soạn: TS. L ê Quy ết Thắng, ThS. Phan Tấn Tài & Ks. Dương Văn Hiếu. 95

File đính kèm:

  • pdfgiao_trinh_ly_thuyet_thong_tin_le_quyet_thang.pdf