Giáo trình Sức bền vật liệu - Lê Đức Thành
Tóm tắt Giáo trình Sức bền vật liệu - Lê Đức Thành: ...5.1 Khi nén vật liệu theo ba phương cùng với trị số ứng suất pháp (H.5.1), người ta thấy vật liệu không bị phá hoại. Hãy kiểm tra bền đối với phân tố trên bằng TB ứng suất tiếp lớn nhất và TB thế năng biến đổi hình dáng lớn nhất. 5.2 Dùng TB ứng ... ; y’ =Qgt ; y = Mgt trong đó: gtq - Tải trọng giả tạo Qgt - Lực cắt giả tạo- Lực cắt trong DGT gtM - Mômen giả tạo- Mômen uốn trong DGT ⇒ Muốn tính góc xoay y’ và độ võng y của một dầm thực (DT) (dầm đang khảo sát) thì chỉ cần tính lực cắt Qgt và mômen ...iết diện, ta thấy lõi y Đường trung hòa O x D/8 Hình D Lõi tiết diện Hình BA Đường trung Đường trung hòa h b xO D C Lõi tiết diện chữ nhật GV: Lê đức Thanh Chương 10: Thanh chịu lực phức tạp 15 tiết diện là một đường tròn đồng tâm đường...
ù hai a) b) y1 y1y2 y2 • Khi heä dao ñoäng vôùi taàn soá ω2, ta coù theå chöùng minh heä dao ñoäng ñieàu hoøa leäch pha 180o (H.13.19.b), goïi laø daïng dao ñoäng chính thöù hai. Dao ñoäng cuûa caû heä moät dao ñoäng phöùc hôïp coù phöông trình: y1(t) = A11sin(ω1t + ϕ1) + A12sin(ω2t + ϕ2) y2(t) = λ1 A11sin(ω1t + ϕ1) - λ2 A12sin(ω2t + ϕ2) (f) (f) khoâng phaûi laø moät dao ñoäng ñieàu hoøa, nhöng coù theå bieåu dieãn theo caùc daïng chính. 13.7 PHÖÔNG PHAÙP RAYLEIGH Ñoái vôùi heä nhieàu baäc töï do, vieäc xaùc ñònh taàn soá rieâng baèng phöông phaùp chính xaùc raát phöùc taïp, do ñoù GV: Leâ ñöùc Thanh Chöông 13: Taûi troïng ñoäng trong moät soá tröôøng hôïp ngöôøi ta duøng phöông phaùp gaàn ñuùng. Trong phaàn naøy, ta xeùt phöông phaùp Rayleigh. Coi daàm nhö moät thanh ñaøn hoài mang n khoái löôïng Mi, moãi khoái löôïng baèng khoái löôïng cuûa töøng ñoaïn thanh daàm (H.13.20). Giaû söû heä dao ñoäng töï do vôùi caùc daïng chính, khi ñoù phöông trình chuyeån ñoäng cuûa moät khoái löôïng Mi laø moät haøm ñieàu hoøa, coù theå vieát: yi(t) = Aisin(ωt + ϕ) vaän toác cuûa Mi laø: )cos()( ϕ+ωω= tAdt tdy i i Khi heä ôû vò trí caân baèng y(t) = 0, vaän toác cöïc ñaïi, theá naêng bieán daïng ñaøn hoài luùc ñoù baèng khoâng, ñoäng naêng heä lôùn nhaát coù giaù trò baèng: 2 2 2 ii yMT ∑ω= Khi heä ôû xa vò trí caân baèng nhaát, vaän toác baèng khoâng, theá naêng cöïc ñaïi. Goïi phöông trình ñöôøng ñaøn hoài cuûa daàm laø y(z). Vì: y” = EJ M− ⇒ M = – EI y” aùp duïng coâng thöùc tính theá naêng bieán daïng ñaøn hoài cuûa daàm, ta ñöôïc: dz dz zydEIU 2 2 2 )( 2 1 ∫ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛= theo nguyeân lyù baûo toaøn naêng löôïng, T = U, ta ñöôïc: Hình 13.20 Heä n baäc töï do mi GV: Leâ ñöùc Thanh Chöông 13: Taûi troïng ñoäng dz dz zydEIyM ii 2 2 2 2 2 )( 2 1 2 ∫∑ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛=ω taàn soá rieâng laø: ∑ ∫ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ =ω 2 2 2 2 2 )( 2 1 ii yM dz dz zydEI (13.24) Vôùi daàm ñôn, tieát dieän ñeàu, troïng löôïng phaân boá q = γA, ñöôøng ñaøn hoài do taûi troïng baûn thaân laø: )64( 24 )( 2234 zLLzz EI qzy +−= khi daàm dao ñoäng, coù theå choïn daïng ña thöùc nhö treân: y(z) = z4 – 4Lz3 + 6L2 z2 AÙp duïng phöông phaùp Rayleigh ta tính ñöôïc taàn soá cuûa dao ñoäng chính thöù nhaát laø: A EIg L γω 21 49,3= So vôùi giaù trò giaûi theo phöông phaùp chính xaùc laø: A EIg L γω 21 52,3= thì sai soá laø 1% ñuû nhoû, chaáp nhaän ñöôïc trong kyõ thuaät. 13.8 VA CHAÏM CUÛA HEÄ MOÄT BAÄC TÖÏ DO 1- Va chaïm ñöùng Xeùt moät daàm mang vaät naëng P vaø chòu va chaïm bôûi vaät naëng Q, rôi theo phöông thaúng ñöùng töø ñoä cao H vaøo vaät naëng P nhö treân H.13.21. Troïng löôïng baûn thaân cuûa daàm ñöôïc boû qua. Giaû thieát khi vaät Q va chaïm P caû hai vaät cuøng chuyeån ñoäng theâm xuoáng döôùi vaø ñaït chuyeån vò lôùn nhaát yñ. Hình 13.21 Heä moät baäc töï do chòu va chaïm ñöùng Q P H y0 yñ GV: Leâ ñöùc Thanh Chöông 13: Taûi troïng ñoäng Chuyeån vò cuûa vaät naëng P do troïng löôïng baûn thaân cuûa noù ñöôïc kyù hieäu laø 0y . Goïi Vo laø vaän toác cuûa Q ngay tröôùc luùc chaïm vaøo P, V laø vaän toác cuûa caû hai vaät P vaø Q ngay sau khi va chaïm. AÙp duïng ñònh luaät baûo toaøn ñoäng löôïng tröôùc vaø ngay sau khi va chaïm, ta ñöôïc: ( )V g QP g QVo += hay oVQP QV += (a) Trong baøi toaùn naøy, ta döïa vaøo phöông phaùp naêng löôïng ñeå tìm chuyeån vò trong daàm. Ta goïi traïng thaùi 1 töông öùng vôùi khi vaät Q vöøa chaïm vaøo vaät P vaø caû hai cuøng chuyeån ñoäng xuoáng döôùi vôùi vaän toác V (luùc naøy chuyeån vò laø 0y ). Traïng thaùi 2 töông öùng vôùi khi Q vaø P ñaït tôùi chuyeån vò toång coäng ñyy +0 . Ñoäng naêng cuûa vaät P vaø Q ôû traïng thaùi 1 ngay sau khi va chaïm: ( ) ( ) 2 22 2 1 2 1 2 1 2 1 oo VQPg QV QP Q g QPmVT +=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ + +== Ñoäng naêng cuûa vaät P vaø Q ôû traïng thaùi 2: GV: Leâ ñöùc Thanh Chöông 13: Taûi troïng ñoäng ( ) 00 2 1 2 1 22 2 =+== g QPmvT Ñoä giaûm ñoäng naêng khi heä chuyeån töø traïng thaùi 1 sang traïng thaùi 2 laø: ( ) 2 2 21 2 1 oVQPg QTTT +=−= (b) Ñoä thay ñoåi theá naêng khi heä chuyeån töø traïng thaùi 1 sang traïng thaùi 2 laø: ññ yQPyyygg QPmgh )()( 00 +=−++==π (c) Theo nguyeân lyù baûo toaøn naêng löôïng, khi heä chuyeån töø traïng thaùi 1 sang traïng thaùi 2, ñoä thay ñoåi cô naêng cuûa vaät P vaø Q seõ chuyeån thaønh theá naêng bieán daïng ñaøn hoài U tích luõy trong daàm. U = T + π (1 Tính U döïa vaøo quan heä giöõa löïc vaø chuyeån vò trong daàm nhö treân H.13.22. ÔÛ traïng thaùi 1, trong daàm tích luyõ moät theá naêng bieán daïng ñaøn hoài U1 ñöôïc tính nhö sau: 01 2 1 PyU = Ñaët P y0=δ laø chuyeån vò taïi ñieåm va chaïm do löïc ñôn vò gaây ra. Theá vaøo bieåu thöùc treân ta coù: 201 2 1 yU δ= ÔÛ traïng thaùi 2, theá naêng bieán daïng ñaøn hoài U2 trong daàm laø: y0 Chuyeån vò y0+yñ P Löïc Hình 13.22. Ñoà thò tính TNBDÑH GV: Leâ ñöùc Thanh Chöông 13: Taûi troïng ñoäng ( )δ 2 0 2 2 1 yyU += ñ Nhö vaäy khi heä chuyeån töø traïng thaùi 1 sang traïng thaùi 2, theá naêng bieán daïng ñaøn hoài trong daàm ñöôïc tích luyõ theâm moät löôïng: ( ){ } ( )0ñññ yyyyyyUUU 22121 2202012 +=−+=−= δδ ññ Py yU += δ2 2 (d) Thay caùc bieåu thöùc (b), (c), (d) vaøo (13.25) ta coù: ( ) ( ) ñññ yQPQPg VQPyy o +++=+ 222 2 1 2δ Goïi yt laø chuyeån vò cuûa daàm taïi ñieåm va chaïm do troïng löôïng Q taùc duïng tónh taïi ñoù gaây ra nhö treân H.13.23. Thay δQyt = vaøo phöông trình treân, ta ñöôïc: ( ) 0/12 2 2 =+−− QPg Vyyyy otñtñ (e) Nghieäm cuûa phöông trình baäc hai (e) laø: )1( 2 2 Q Pg Vyyyy ottt + +±=d Vì yñ > 0, neân chæ choïn nghieäm döông cuûa (e), töùc laø: t t o t ot ttd yK Q Pgy Vy Q Pg Vyyyy ñ= ⎟⎟ ⎟⎟ ⎟ ⎠ ⎞ ⎜⎜ ⎜⎜ ⎜ ⎝ ⎛ + ++= + ++= )1( 11 )1( 22 2 (13.26) Do ñoù heä soá ñoäng ñöôïc tính bôûi: Hình 13.23. Sô ñoà tính chuyeån vò yt Q yt GV: Leâ ñöùc Thanh Chöông 13: Taûi troïng ñoäng )1( 11 2 0 Q Pgy VK t d + ++= (13.27) Khi vaät Q rôi töï do töø ñoä cao H xuoáng daàm, töùc laø gHVo 2= , thay vaøo (13.27): )1( 211 Q Py HK t d + ++= (13.28) Khi taïi ñieåm va chaïm khoâng coù troïng löôïng ñaët saün P = 0, heä soá ñoäng taêng leân: t d y HK 211 ++= (1 Khi P = 0, H = 0, nghóa laø troïng löôïng Q ñaët ñoät ngoät leân daàm: Kñ = 2 (1 Theo (13.29), khi yt caøng lôùn, nghóa laø ñoä cöùng cuûa thanh caøng nhoû, thì Kñ caøng nhoû, do ñoù söï va chaïm caøng ít nguy hieåm. Ñeå ñaûm baûo ñieàu kieän beàn, ngöôøi ta coù theå laøm taêng yt baèng caùch ñaët taïi ñieåm chòu va chaïm nhöõng vaät theå meàm nhö loø xo hay taám ñeäm cao su... Khi ñaõ tính ñöôïc Kñ, coù theå tính ñaïi löôïng S khaùc trong heä töông töï nhö chuyeån vò, nghóa laø: PQttp SSKS += ñ (13.31) QtS laø ñaïi löôïng caàn tính (noäi löïc, öùng suaát) do Q coi nhö ñaët tónh leân heä taïi maët caét va chaïm gaây ra. PtS laø ñaïi löôïng caàn tính (noäi löïc, öùng suaát) do caùc taûi troïng hoaøn toaøn tónh ñaët leân heä gaây ra. GV: Leâ ñöùc Thanh Chöông 13: Taûi troïng ñoäng Ñieàu kieän beàn: σñ,max ≤ [σ] Chuù yù: Neáu choïn moác theá naêng baèng khoâng ôû vò trí daàm khoâng bieán daïng, thì cô naêng ban ñaàu cuûa heä chính laø theá naêng: QH=π Ngay sau khi va chaïm, P vaø Q cuøng chuyeån ñoäng xuoáng döôùi vôùi vaän toác V thì cô naêng cuûa heä chính laø ñoäng naêng: ( ) ( ) π<+=+= += QH QP QV QPg QV g QPT o 2 2 2 2 1 2 1 Nhö vaäy ñaõ coù söï maát maùt naêng löôïng töông öùng vôùi giaû thieát va chaïm meàm tuyeät ñoái cuûa 2 vaät theå; naêng löôïng naøy laøm cho 2 vaät theå bieán daïng hoaøn toaøn deûo, aùp saùt vaøo nhau vaø chuyeån ñoäng cuøng vaän toác veà phía döôùi. 2- Va chaïm ngang Xeùt moät daàm mang vaät naëng P. Vaät naëng Q chuyeån ñoäng ngang vôùi vaän toác V0 va chaïm vaøo vaät naëng P nhö treân H.13.24. Troïng löôïng baûn thaân cuûa daàm ñöôïc boû qua. Giaû thieát khi vaät Q va chaïm P caû hai vaät cuøng chuyeån ñoäng ngang vaø ñaït chuyeån vò lôùn nhaát yñ. Laäp luaän nhö tröôøng hôïp va chaïm ñöùng, ta cuõng coù: Hình 13.24. Heä moät baäc töï do chòu va chaïm ngang Vo P Q yñ GV: Leâ ñöùc Thanh Chöông 13: Taûi troïng ñoäng Vaän toác cuûa hai vaät P, Q cuøng chuyeån ñoäng ngay sau khi va chaïm laø: oVQP QV += Ñoä giaûm ñoäng naêng trong heä: ( ) 2 2 2 1 oVQPg QT += Vì hai vaät chuyeån ñoäng theo phöông ngang, neân khoâng coù söï thay ñoåi theá naêng, töùc laø: π = 0 Theá naêng bieán daïng ñaøn hoài tích luõy trong heä laø: δ2 2 ñyU = Nguyeân lyù baûo toaøn naêng löôïng, T+π = U, ta ñöôïc phöông trình sau: ( ) δ22 1 222 ñyV QPg Q o =+ Laáy giaù trò nghieäm döông cuûa yñ, ta ñöôïc: ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ + = Q Pg QVy o 1 2δ ñ (13.32) Ta laïi coù Q yt=δ , vôùi yt laø chuyeån vò ngang cuûa daàm taïi ñieåm va chaïm do troïng löôïng Q taùc duïng tónh naèm ngang taïi ñoù. Thay vaøo phöông trình (13.32) nhö sau: ññ Ky Q Pgy Vyy t t o t = + = )1( (13.33) Heä soá ñoäng: )1( Q Pgy VK t o + =ñ (13.34) GV: Leâ ñöùc Thanh Chöông 13: Taûi troïng ñoäng Khi khoâng ñaët saün troïng löôïng chòu va chaïm, töùc P = 0, heä soá ñoäng laø: t o gy VK =ñ (13.35) Khi ñoù, noäi löïc, öùng suaát cuõng ñöôïc tính nhö sau: Mñ = Mt.Kñ σñ = σt.Kñ ............... ( Ñieàu kieän beàn: ][max, σσ ≤ñ Ví duï 13.5 Moät daàm coâng xon tieát dieän chöõ nhaät (20 × 40) cm chòu va chaïm ñöùng bôûi moät troïng löôïng Q = 1 kN rôi töï do töø ñoä cao H = 0,5 m (H.13.25.a). Boû qua troïng löôïng baûn thaân daàm, tính öùng suaát vaø ñoä voõng lôùn nhaát cuûa daàm. Neáu keå ñeán troïng löôïng baûn thaân daàm q, tính laïi öùng suaát vaø ñoä voõng. Neáu ñaët tieát dieän daàm nhö (H.13.25.b), tính laïi öùng suaát vaø ñoäï voõng. Cho: E = 0,7.103 kN/cm2; q = 0,64 kN/m. Giaûi. ÖÙng suaát ñoäng: dQtd K,σσ = vôùi: t d y HK 211 ++= Khoâng keå troïng löôïng baûn thaân daàm, ta coù: cm 0357,0 12 40.20)10.7,0(3 )200(1 3 33 33 === x t EI QLy Hình 13.25 Daàm coâng xon chòu va chaïm Q = 1 kN H = 0,5 m L = 2 m b)a) Mx,Q Q.L Mx,q Q.L2 2 GV: Leâ ñöùc Thanh Chöông 13: Taûi troïng ñoäng Heä soá ñoäng : 93,53 0357,0 )50(211 =++=dK ÖÙng suaát lôùn nhaát taïi ngaøm (H.13.25): 2kN/cm 02,2)93,53( 6/40.20 )200(1 . 2 max, max,,max, == === d x d x x dQtd KW LQK W M Kσσ Ñoä voõng lôùn nhaát taïi ñaàu töï do: cmKyy dQt 92,1)93,53(0357,0max,,max === Khi keå ñeán troïng löôïng baûn thaân, coù theå duøng phöông phaùp thu goïn khoái löôïng, khi ñoù coi nhö daàm khoâng troïng löôïng vaø taïi ñaàu töï do coù moät troïng löôïng laø (33/140)qL = 0,3 kN (qL laø troïng löôïng daàm). Heä soá ñoäng seõ laø: 43,47 ) 1 3,01(0357,0 )50(211 )1( 211 = + ++= + ++= Q Py HK t d ÖÙng suaát do va chaïm laø: 2kN/cm 78,143,47. 6/40.20 )200(1 2,max, === dQtd Kσσ Keå theâm öùng suaát do troïng löôïng daàm: 2kN/cm 024,0 6/40.20 100.2.64,02/ 2 22 max,, max, ==== xx qt d W qL W Mσ ÖÙng suaát lôùn nhaát trong daàm laø: σmax = 1,78 + 0,024 = 1,804 kN/cm2 Khi keå ñeán troïng löôïng daàm, öùng suaát lôùn nhaát giaûm. Ñoä voõng taïi ñaàu töï do Ñoä voõng do troïng löôïng baûn thaân: cm 017,0 12 40.20).10.7,0(8 )200(10.64,0 8 33 424 === − x t EI qLy GV: Leâ ñöùc Thanh Chöông 13: Taûi troïng ñoäng Ñoä voõng khi coù va chaïm: cm71,1017,043,47.0357,0,max,,max, =+=+= qtdQtd yKyy Neáu ñaët tieát dieän daàm nhö (H.13.25.b), ta ñöôïc: • Khoâng keå troïng löôïng daàm: cm 143,0 12 20.40).10.7,0(3 )200.(1 3 33 33 === x t EI QLy Heä soá ñoäng : 46,27 143,0 )50(211 =++=dK ÖÙng suaát lôùn nhaát taïi ngaøm : 2kN/cm 06,2)46,27( 6/20.40 )200.(1 2 max, max,,max, == === d x d x x dQtd KW QLK W M Kσσ Ñoä voõng taïi ñaàu töï do: cm93,3)46,27.(143,0 ==ty • Keå ñeán troïng löôïng baûn thaân, ta duøng phöông phaùp thu goïn khoái löôïng, khi ñoù coi nhö daàm khoâng troïng löôïng vaø taïi ñaàu töï do coù moät troïng löôïng laø (33/140)qL = 0,3 kN (qL laø troïng löôïng daàm). Heä soá ñoäng seõ laø: 21,24 ) 1 3,01(143,0 )50(211 )1( 211 = + ++= + ++= Q Py HK t d ÖÙng suaát do va chaïm laø: 2kN/cm 816,121,24. 6/20.40 )200(1 2,max, === dQtd Kσσ Keå theâm öùng suaát do troïng löôïng daàm: 2kN/cm 096,0 6/20.40 100.2.64,02/ 2 22 max,, max, ==== xx qt d W qL W Mσ ÖÙng suaát lôùn nhaát trong daàm laø: GV: Leâ ñöùc Thanh Chöông 13: Taûi troïng ñoäng σmax = 1,816 + 0,096 = 1,912 kN/cm2 Khi keå ñeán troïng löôïng daàm, öùng suaát lôùn nhaát giaûm. Ñoä voõng taïi ñaàu töï do: cm48,3017,0)21,24.(143,0 =+=ty Ví duï 13.6 Daàm ABC tieát dieän I-24 chòu va chaïm ñöùng bôûi moät troïng löôïng Q = 2 kN rôi töï do töø ñoä cao H = 50 cm (H.13.26.a), boû qua troïng löôïng baûn thaân daàm, tính σmax; kieåm tra beàn. Cho: I-24 coù: Ix = 3460 cm4, Wx = 289 cm3, q = 0,273 kN/m; [σ] = 16 kN/cm2. GV: Leâ ñöùc Thanh Chöông 13: Taûi troïng ñoäng b) vaø c) Heä chòu va chaïm coù loø xo; d) Daàm chòu troïng löôïng baûn thaân c) d) qL2/8 A B A B q Q = 2 kN QL/2 Q = 2 kN H = 50 cm H = 50 cm A I-24 C C C Clx = 5 kN/m B L/2 a) L = 6 m b) A B A B Baây giôø, ñaët moät loø xo coù Clx = 5 kN/m taïi C ñeå ñôõ vaät va chaïm Q (H.13.24.b), tính laïi heä soá ñoäng vaø σmax; xeùt laïi ñieàu kieän beàn. Neáu khoâng ñaët ôû C maø thay loø xo vaøo goái töïa taïi B (H.13.26.c), heä soá ñoäng laø bao nhieâu? Cho: E = 2.104 kN/cm2; [σ] = 16 kN/cm2. Giaûi. Khoâng keå troïng löôïng baûn thaân daàm. Chuyeån vò do Q taùc duïng tónh taïi C laø: cm 39,0 3460).10.2(8 )600.(1 8 4 33 === x t EI QLy GV: Leâ ñöùc Thanh Chöông 13: Taûi troïng ñoäng Heä soá ñoäng: 04,17 39,0 )50(211 =++=dK ÖÙng suaát lôùn nhaát taïi B (H.13.21): [ ] 22 kN/cm kN/cm 1669,17)04,17( 289.2 )600.(1 .2 . max, max, max,,max, =>== === σσ σσ d d x d x x dQtd KW LQK W M K Daàm khoâng beàn. Chuyeån vò taïi C: yC = 0,39(17,04) = 6,64 cm Xeùt tröôøng hôïp coù loø xo ñaët ngay taïi ñieåm va chaïm. Chuyeån vò do Q taùc duïng tónh taïi C laø: cm 59,02,039,0 5 1 3460).10.2(8 )600.(1 8 4 33 =+=+=+= lxx t C Q EI QLy Heä soá ñoäng : 06,14 59,0 )50(211 =++=dK ÖÙng suaát lôùn nhaát taïi B (H.13.24): 2kN/cm 6.1406,14 289 )300.(1 max,,max, === dQtd Kσσ σñmax < [σ] = 16 kN/cm2 daàm thoûa ñieàu kieän beàn. Chuyeån vò cuûa daàm taïi C: yC = 0,39(14,06) = 5,48 cm giaûm so vôùi tröôøng hôïp treân. Xeùt tröôøng hôïp coù loø xo ñaët taïi goái B. Baây giôø, chuyeån vò do Q taùc duïng tónh taïi C laø: cm 69,03,039,0 5 1 2 3 3460).10.2(8 )600.(1)2/3( 2 3 8 4 33 =+=+=+= lxx t C Q EI QLy Heä soá ñoäng: 08,13 69,0 )50(211 =++=dK ÖÙng suaát lôùn nhaát taïi B (H.10.21): GV: Leâ ñöùc Thanh Chöông 13: Taûi troïng ñoäng 2kN/cm 57,1308,13 289 )300.(1 max,,max, === dQtd Kσσ Chuyeån vò taïi C: yC = 0,69(13,08) = 9,02 cm Trong tröôøng hôïp naøy, öùng suaát giaûm nhöng chuyeån vò taêng so vôùi khi ñaët loø xo ôû ñaàu töï do. BAØI TAÄP CHÖÔNG 13 13.1 Moät vaät naëng P ñöôïc naâng leân cao vôùi baèng heä thoáng roøng roïc ñôn giaûn nhö treân H.13.24.a. Neáu keùo daây caùp vôùi gia toác ñeàu a, tính löïc caêng treân daây caùp. Neáu duøng heä thoáng ba caëïp roøng roïc vaø cuõng keùo daây vôùi gia toác a thì löïc caêng laø bao nhieâu? Hình 13.25 P a) P b) P = 2kN A = 5 m/s2 A B C D Hình 13.26 450 13.2 Moät keát caáu naâng vaät naëng P chuyeån ñoäng leân vôùi gia toác a (H.13.26). Tính noäi löïc phaùt sinh trong caùc thanh AB, BC vaø CD. 13.3 Moät truï AB coù chieàu cao H, dieän tích maët caét ngang laø F, moâñun choáng uoán W, troïng löôïng rieâng laø γ mang moät vaät naëng P. Truï ñöôïc gaén chaët vaøo moät beä vaän chuyeån theo phöông ngang vôùi gia toác a (H.13.27). GV: Leâ ñöùc Thanh Chöông 13: Taûi troïng ñoäng M2 Hình 13.29 a a/2 a/2 A B C D P Xem truï bò ngaøm taïi tieát dieän A vaøo beä, xaùc ñònh öùng suaát phaùp σmax, σmin taïi maët caét nguy hieåm cuûa truï. Hình 13.27 A H P F, W, γ A B a 2 m 2 m4 m F = 1 cm2 a = 2 m/s2 F = 1 cm2 Hình 13.28 13.4 Xaùc ñònh öùng suaát phaùp lôùn nhaát trong daây caùp vaø trong daàm I-24 do taùc duïng ñoàng thôøi cuûa troïng löïc vaø löïc quaùn tính khi heä ñöôïc keùo leân vôùi gia toác a (H.13.28). 13.5 Moät truïc tieát dieän troøn AB ñöôøng kính D mang moät thanh CD tieát dieän chöõ nhaät b.h, ñaàu thanh CD coù moät vaät naëng troïng löôïng P, heä quay quanh truïc AB vôùi vaän toác n = 210 vg/ph (H.13.29). Tính öùng suaát lôùn nhaát trong thanh CD vaø truïc AB. Cho: a = 1 m; D = 4 cm; h = 2b = 6 cm; P = 0,1 kN. GV: Leâ ñöùc Thanh Chöông 13: Taûi troïng ñoäng Boû qua troïng löôïng baûn thaân cuûa heä. 13.6 Tính taàn soá goùc vaø chu kyø dao ñoäng cuûa caùc heä veõ treân H.13.30, C1 vaø C2 laø ñoä cöùng cuûa loø xo. Hình 13.30 C1 C2 C1 C2 a) c) d) e) C1 C2 C1 C2 C1 C1 C2 Q b) Q Q Q Q 13.7 Moät daàm ñôn giaûn maët caét hình chöõ I soá 40 daøi 8 m mang moät troïng löôïng 20 kN ôû giöõa nhòp. Tính taàn soá rieâng ω cuûa heä khi coù keå vaø khi khoâng keå ñeán troïng löôïng daàm. 13.8 Moät daàm theùp I24 mang moät moâtô naëng 2 kN toác ñoä 200 vg/ph, löïc quaùn tính do khoái löôïng leäch taâm laø 0,2 kN (H.13.31). Boû qua troïng löôïng baûn thaân cuûa daàm vaø loø xo, xaùc ñònh öùng suaát ñoäng lôùn nhaát trong daàm trong caùc tröôøng hôïp sau: a) Daàm I24 ñaët theo phöông ñöùng (I) b) Daàm I24 ñaët theo phöông ngang ( ). 13.9 Giaû söû hai goái töïa loø xo treân daàm ôû c =1,5 kN/cm n = 200vg/ph Q = 2 kN Qo = 0,2 kN 2 m Hình 13.31 2 m c = 1,5 kN/cm GV: Leâ ñöùc Thanh Chöông 13: Taûi troïng ñoäng H.13.31 ñöôïc thay baèng goái töïa cöùng vaø ñaët hai loø xo döôùi ñeá moâtô nhö ôû H.13.32. Tính laïi öùng suaát vaø ñoä voõng lôùn nhaát trong daàm theo caû hai tröôøng hôïp nhö treân. Cho: E = 2.104 kN/cm2. n = 200 vg/ph Q = 2 kN Qo = 0,2 kN 2 m Hình 13.32 2 m c = 1,5 kN/cm 13.10 Moät daàm goã tieát dieän chöõ nhaät b.h, coù ñaàu muùt thöøa gaén moät roøng roïc ñeå ñöa moät thuøng troïng löôïng Q chöùa vaät naëng P leân cao. (H.13.33). Haõy xeùt hai tröôøng hôïp: a) Vaät naëng P ñöôïc treo trong thuøng vaø thuøng ñöôïc keùo leân vôùi gia toác a = 2 m/s2. Boû qua troïng löôïng daàm, daây vaø roøng roïc, tính öùng suaát lôùn nhaát cuûa daàm. Cho: P = 0,5 kN; Q = 1 kN; L = 4 m. b) Trong quaù trình dòch chuyeån vôùi gia toác a = 2 m/s2 vaät naëng P bò rôi xuoáng ñaùy thuøng. Tính laïi öùng suaát cuûa daàm. Cho: H = 0,4 m. GV: Leâ ñöùc Thanh Chöông 13: Taûi troïng ñoäng 13.11 Moät troïng löôïng P = 0,5 kN rôi töø moät ñoä cao H = 10 cm xuoáng ñaàu C cuûa moät daàm tieát dieän chöõ nhaät b × h = 20 × 40 cm2, daøi L = 4 m (H.13.34.a). Tính öùng suaát vaø ñoä voõng lôùn nhaát cuûa daàm Neáu thay goái töïa B baèng moät loø xo coù ñöôøng kính D = 100 mm, ñöôøng kính sôïi theùp d = 10 mm, soá voøng laøm vieäc n = 10 (H.13.34.b). Tính öùng suaát vaø ñoä voõng lôùn nhaát cuûa daàm. Cho: Edaàm = 2.104 kN/cm2, Gloxo = 8.103 kN/cm2. Hình 13.34 L/2 b) b.h A B C H P L L/2 a) b.h A B C H P L 13.12 Xaùc ñònh öùng suaát cuûa daàm khi vaät bò va chaïm ngang (H.13.35). Cho: a = 2 m; b.h = 20 × 40 cm2. Thanh DB tuyeät ñoái cöùng. H = 0,4 m 300 L L/2 P Q Hình 13.33 b.h GV: Leâ ñöùc Thanh Chöông 13: Taûi troïng ñoäng Hình 13.35 b.h A B C Q = 0,1 kN V = 5 m/s a a2a D
File đính kèm:
- giao_trinh_suc_ben_vat_lieu_le_duc_thanh.pdf