Bài giảng Cơ học đất - Trần Minh Tùng
Tóm tắt Bài giảng Cơ học đất - Trần Minh Tùng: ... hình trụ, cắt gọt thẳng, phù hợp với hình dạng của hộp cắt. TRÌNH TỰ THÍ NGHIỆM 2r H i i P F σ = 9 Chuẩn bị ít nhất ba bốn mẫu đất như nhau 9 Lắp đặt mẫu đất vào hộp cắt và gia tải theo phương đứng P1 (kG) suy ra ứng suất thẳng đứng σ1 BAI GIANG: CO HOC ...= z r k π 2z kP z =σ R r Đặt Giá trị k phụ thuộc vào tỷ số r/z (tra bảng) σz σrσθ BAI GIANG: CO HOC DAT ỨNG SUẤT DO TẢI TRỌNG NGOÀI 1. Tải trọng đứng tập trung X Y Z 0 P z y x M R r σz σrσθ ) )( )21( 2 3( 2 5 23 2 zRR z R rz z P r + −−= υ...× S ...) 27 1(321 93 +−−= −− NNt eeU π Một cách gần đúng ta có: N t eU −−= 3321 π t H C N v2 2 4 π= no t v a kC γ= hệ số cố kết. H ao, kt ao = 0 (lớp đất không bị nén lún và không thấm nước) Z q BAI GIANG: CO HOC DAT DỰÏ TÍNH ĐỘÄ LÚÙN CỦÛA NỀÀN ĐẤÁT...
aghi q = γh pGH b ϕ ϕπ/4- ϕ/2 π/4- ϕ/2 Töøø thí nghieääm Terzaghi ñaõõ xaùùc ñònh ñöôøøng tröôïït.Terzaghi ñaõõ xeùùt caânâ baèèng tónh hoïïc cuûûa taáát caûû caùùc löïïc taùùc duïïng leânâ heää vaøø suy ra ñöôïïc coângâ thöùùc tính taûûi troïïng giôùùi haïïn pGH cho tröôøøng hôïïp moùùng baêngê : Thöïïc nghieääm cho thaááy khi moùùng laøøm vieääc coùù moäät khoáái ñaáát bò neùùn chaëët neâmâ ñaáát. PGH = 0,5Nγ b γ + Nq q + Nc c BAI GIANG: CO HOC DAT XAÙÙC ÑÒNH SÖÙÙC CHÒU TAÛÛI PGH CUÛÛA NEÀÀN MOÙÙNG Phöông phaùp Terzaghi q = γh pGH b ϕ ϕπ/4- ϕ/2 π/4- ϕ/2 PGH = 0,5Nγ b γ + Nq q + Nc c Nγ , Nq, Nc laøø ba heää soáá söùùc chòu taûûi phuïï thuoääc vaøøo goùùc ma saùùt trong ϕ cuûûa ñaáát 5BAI GIANG: CO HOC DAT XAÙÙC ÑÒNH SÖÙÙC CHÒU TAÛÛI PGH CUÛÛA NEÀÀN MOÙÙNG Caùùch laøøm cuûûa Beâreâzantxevâ â (döïïa theo phöông phaùùp Terzaghi): Ñaùy moùng gaén lieàn vôùi moät neâm ñaát, ñoái vôùi moùng noâng (h/b < 0,5) thì khoái ñaát naøy coù daïng hình tam giaùc vuoâng caân. Töø ñoù Beâreâzantxev ñöa ra coâng thöùc tính taûi troïng giôùi haïn pGH cho tröôøng hôïp moùng noâng nhö sau: q = γh pgh 45o45o 90o 90o b Beâreâzantxev cuõng baèng thöïc nghieäm phaùt hieän thaáy khi bò tröôït: PGH = Nγ b γ + Nq q + Nc c BAI GIANG: CO HOC DAT XAÙÙC ÑÒNH SÖÙÙC CHÒU TAÛÛI PGH CUÛÛA NEÀÀN MOÙÙNG Caùùch laøøm cuûûa Beâreâzantxevâ â (döïïa theo phöông phaùùp Terzaghi): PGH = Nγ b γ + Nq q + Nc c Nγ , Nq, Nc laø ba heä soá söùc chòu taûi phuï thuoäc vaøo goùc ma saùt trong ϕ (tra baûng 5.3). Tröôøng hôïp moùng hình troøn caùc heä soá Nγ , Nq, Nc ñöôïc cho trong baûng 5.4. BAI GIANG: CO HOC DAT γ= 18,5 kN/m3 ϕ= 20O c = 10 kPa 1m 3m XAÙÙC ÑÒNH SÖÙÙC CHÒU TAÛÛI PGH CUÛÛA NEÀÀN MOÙÙNG Ví duïï 1: Moùng baêng coù beà roäng b = 3 m ñaët saâu h = 1m. Neàn ñaát coù caùc chæ tieâu cô lyù nhö sau: γ = 18,5 kN/m3; c = 10 kPa; ϕ = 20O. Tính pGH theo Terzaghi, theo Berezantxev ứng với trường hợp mực nước ngầm ở độ saâu -1.0m vaø độ saâu -0.5m 6BAI GIANG: CO HOC DAT Ta coù h/b = 1/3 < 0,5 (moùng noâng). Tra baûng 5.3 ta ñöôïc: Nγ = 3, Nq = 6.5, Nc =15,1. → PGH = Nγ bγ + Nq q + Nc C = 3x3x8,5 + 6,5x1x18,5 + 15,1x10 = 347,75 Kpa. XAÙÙC ÑÒNH SÖÙÙC CHÒU TAÛÛI PGH CUÛÛA NEÀÀN MOÙÙNG Baøøi giaûûi: PGH = 347,75 Kpa Theo Terzaghi ? BAI GIANG: CO HOC DAT XAÙÙC ÑÒNH SÖÙÙC CHÒU TAÛÛI PGH CUÛÛA NEÀÀN MOÙÙNG Ví duïï 2: Moùng troøn coù ñöôøng kính 2r = 3 m ñaët saâu h = 1m. Neàn ñaát coù caùc chæ tieâu cô lyù nhö sau: γ = 18,5 KN/m3; c = 10 Kpa; ϕ = 20O. Tính pgh theo Beâreâzanxev γ= 18,5 kN/m3 ϕ= 20O c = 10 kPa 1m 3m BAI GIANG: CO HOC DAT Ta coù h/2r = 1/3 < 0,5 (moùng noâng). Tra baûng 5.4 ta ñöôïc: Nγ = 3.65, Nq = 8.5, Nc =20,9. → Pgh = Nγ bγ + Nq q + Nc c = 3x3,65x18,5 + 6,5x1x18,5 + 20,9x10 = 568,525 Kpa. XAÙÙC ÑÒNH SÖÙÙC CHÒU TAÛÛI PGH CUÛÛA NEÀÀN MOÙÙNG Baøøi giaûûi: PGH = 568,525 Kpa 7BAI GIANG: CO HOC DAT PHÖÔNG PHAÙÙP XAÙÙC ÑÒNH PGH THEO KEÁÁT QUAÛÛ CUÛÛA LYÙÙ THUYEÁÁT CAÂN BAÂ ÈÈNG GIÔÙÙI HAÏÏN XOÂCOÂLOVXKIÂ Â Xoâcoâlovxkiâ â xeùùt baøøi toaùùn phaúúng: Xeùùt nöûûa maëët phaúúng caânâ baèèng giôùùi haïïn giaûû thuyeáát moïïi ñieååm trong neààn ñaáát ñeààu ñaïït ñeáán traïïng thaùùi giôí haïïn (caùùc thaøønh phaààn öùùng suaáát thoûûa maõnõ ñieààu kieään Morh–Rankin). Döïïa vaøøo ñieààu kieään caânâ baèèng tónh hoïïc ñeåå giaûûi baøøi toaùùn q = γh Y Z δ p g h (b ) b P g h( o) Thaønh phaàn thaúng ñöùng cuûa taûi troïng giôùi haïn laø: PGH(y) = Nγ y γ + Nqγh + Nc c Nγ, Nq, Nc = f(ϕ, δ)baûng5.1. BAI GIANG: CO HOC DAT PHÖÔNG PHAÙÙP XAÙÙC ÑÒNH PGH THEO KEÁÁT QUAÛÛ CUÛÛA LYÙÙ THUYEÁÁT CAÂN BAÂ ÈÈNG GIÔÙÙI HAÏÏN XOÂCOÂLOVXKIÂ Â q = γh Y Z δ p g h (b ) b P g h( o) PGH (b) = Nγ b γ + Nqγ h + Nc c PGH (0) = Nqγ h + Nc c Thaønh phaàn theo phöông ngang cuûa taûi troïng giôùi haïn: PGH(h) (y) = PGH(y) x tg δ δ - goùc nghieâng cuûa taûi troïng BAI GIANG: CO HOC DAT PHÖÔNG PHAÙÙP XAÙÙC ÑÒNH PGH THEO KEÁÁT QUAÛÛ CUÛÛA LYÙÙ THUYEÁÁT CAÂN BAÂ ÈÈNG GIÔÙÙI HAÏÏN XOÂCOÂLOVXKIÂ Â Ví duïï 1: Moùng baêng coù beà roäng b = 3m, ñoä saâu ñaët moùng laø h = 1 m, taûi troïng nghieâng δ = 10o. Neàn ñaát coù caùc chæ tieâu cô lyù nhö sau: γ = 18,5 kN/m3; c = 10 kPa; ϕ = 20O. Tính NGH, TGH γ= 18,5 kN/m3 ϕ= 20O c = 10 kPa 1m 3m 10oNGH 8BAI GIANG: CO HOC DAT PHÖÔNG PHAÙÙP XAÙÙC ÑÒNH PGH THEO KEÁÁT QUAÛÛ CUÛÛA LYÙÙ THUYEÁÁT CAÂN BAÂ ÈÈNG GIÔÙÙI HAÏÏN XOÂCOÂLOVXKIÂ Â Giaûûi: ϕ= 20O, δ = 10o tra baûng 5.1 ta ñöôïc: Nγ = 1,51, Nq = 4,65, Nc =10 Taïi y = o m: PGH (0) = Nqγ h + Nc c = 4,65x18,5x1 + 10x10 = 186 Kpa Taïi y = 3 m: PGH (3) = Nγ b γ + Nqγ h + Nc c = 1,51x3x18,5 + 4,65x18,5x1 + 10x10 = 269,8 Kpa mkNb PoP N ghghgh /2.694310cos2 8,269186 10cos2 )3()( 00 =+= += TGH = NGH .sin δ = 694,2 x sin10o= 120.5 kN/m BAI GIANG: CO HOC DAT XAÙÙC ÑÒNH GIÔÙÙI HAÏÏN TUYEÁÁN TÍNH PM VAØØ P1/4 THEO GIAÛÛ THUYEÁÁT NEÀÀN LAØØ MOÄÄT BAÙÙN KHOÂNG Â GIAN BIEÁÁN DAÏÏNG TUYEÁÁN TÍNH ¾Giaû thuyeát neàn laø moät baùn khoâng gian bieán daïng tuyeán tính, xaùc ñònh ñöôïc öùng suaát taïi moïi ñieåm trong neàn ñaát döôùi taùc duïng cuûa taûi troïng vaø troïng löôïng baûn thaân. ¾Döïa vaøo ñieàu kieän caân baèng giôùi haïn cuûa phaân toá ñaát ta xaùc ñònh ñöôïc vuøng caân baèng cöïc haïn (vuøng bieán daïng deûo). ¾Tröôøng hôïp taûi troïng hình baêng ngöôøi ta ñaõ vieát ñöôïc phöông trình ñöôøng bieân giôùi haïn vuøng bieán daïng deûo: Z, 2β-ñoä saâu vaø goùc nhìn cuûa ñieåm ôû bieân vuøng bieán daïng deûo hgChpz −−−−= ϕγβϕ β πγ γ cot)2 sin 2sin( BAI GIANG: CO HOC DAT b q = γh P Vuøng bieán daïng deûoz M ax 2β z XAÙÙC ÑÒNH GIÔÙÙI HAÏÏN TUYEÁÁN TÍNH PM VAØØ P1/4 THEO GIAÛÛ THUYEÁÁT NEÀÀN LAØØ MOÄÄT BAÙÙN KHOÂNG Â GIAN BIEÁÁN DAÏÏNG TUYEÁÁN TÍNH Ñoää saâuâ vuøøng bieáán daïïng deûûo hgCghpzMax −−−+−= ϕγ πϕϕπγ γ cot) 2 (cot Taûûi troïïng giôùùi haïïn theo ñoää saâuâ vuøøng giôùùi haïïn deûûo h g gChz p Max Z γπϕϕ ϕγπγ + −+ ++ = 2 cot )cot( max Chuùù yùù: Nhöõngõ tính toaùùn treânâ chæ laøø gaààn ñuùùng vì ta ñaõõ giaûû thuyeáát neààn laøø nöûûa khoângâ gian bieáán daïïng tuyeáán tính nhöng khi xeùùt thì laïïi xeùùt khi neààn bò bieáán daïïng deûûo 9BAI GIANG: CO HOC DAT b q = γh P Vuøng bieán daïng deûoz M ax 2β z XAÙÙC ÑÒNH GIÔÙÙI HAÏÏN TUYEÁÁN TÍNH PM VAØØ P1/4 THEO GIAÛÛ THUYEÁÁT NEÀÀN LAØØ MOÄÄT BAÙÙN KHOÂNG Â GIAN BIEÁÁN DAÏÏNG TUYEÁÁN TÍNH ÖÙng vôùi zMax = 0 (vuøng giôí haïn deûo baét ñaáu xuaát hieän taïi hai meùp moùng), taûi troïng öùng vôùi zMax = 0 coøn ñöôïc goïi laø taûi troïng giôùi haïn meùp h g gCh pm γπϕϕ ϕγπγ + −+ ⎥⎦ ⎤⎢⎣ ⎡ + = 2 cot cot BAI GIANG: CO HOC DAT b q = γh P Vuøng bieán daïng deûo z M ax 2β z XAÙÙC ÑÒNH GIÔÙÙI HAÏÏN TUYEÁÁN TÍNH PM VAØØ P1/4 THEO GIAÛÛ THUYEÁÁT NEÀÀN LAØØ MOÄÄT BAÙÙN KHOÂNG Â GIAN BIEÁÁN DAÏÏNG TUYEÁÁN TÍNH ÖÙng vôùi zMax = 0 (vuøng giôí haïn deûo baét ñaáu xuaát hieän taïi hai meùp moùng), taûi troïng öùng vôùi zMax = 0 coøn ñöôïc goïi laø taûi troïng giôùi haïn meùp h g gCh pm γπϕϕ ϕγπγ + −+ ⎥⎦ ⎤⎢⎣ ⎡ + = 2 cot cot Giaù trò Pghmeùp naøy quaù beù, vì thöïc chaát neàn ñaát luùc naøy chöa bò bieán daïng deûo BAI GIANG: CO HOC DAT b q = γh P Vuøng bieán daïng deûoz M ax 2β z XAÙÙC ÑÒNH GIÔÙÙI HAÏÏN TUYEÁÁN TÍNH PM VAØØ P1/4 THEO GIAÛÛ THUYEÁÁT NEÀÀN LAØØ MOÄÄT BAÙÙN KHOÂNG Â GIAN BIEÁÁN DAÏÏNG TUYEÁÁN TÍNH Giaù trò aùp suaát khi zMax = 1/4b kyù hieäu laø “p1/4” Caû hai giaù trò taûi troïng (pm, p1/4) ñeàu xem laø taûi troïng giôùi haïn tuyeán tính cuûa neàn ñaát, trong tính toùan ngöôøi ta xem p1/4 laø taûi troïng giôùi haïn tuyeán tính. h g gChb p γπϕϕ ϕγπγ + −+ ⎥⎦ ⎤⎢⎣ ⎡ ++ = 2 cot cot 4 1 4/1 10 BAI GIANG: CO HOC DAT Baøøi 1: Moät moùng baêng coù beà roäng b = 3,0 m, chieàu saâu ñaët moùng h = 1,0m. Ñaát neàn coù goùc ma saùt trong ϕ = 20o, löïc dính c = 10 kPa, dung troïng γ = 18.5 kN/m3.Tính aùp suaát giôùi haïn tuyeán tính p1/4 vaø Pgh theo k.Terzaghi öùng vôùi tröôøng hôïp möïc nöôùc ngaàm ôû taïi maët ñaát vaø tröôøng hôïp möïc nöôùc ngaàm ôû ñoä saâu – 1m. BAØØI TAÄÄP CHÖÔNG 5 γ= 18.5 kN/m3 ϕ= 20O c = 10 kPa 1. 0m 3m -1m ±0m BAI GIANG: CO HOC DAT γ= 19 kN/m3 ϕ= 20O c = 10 kPa 1. 5 m 2.5m 10oPth Baøøi 2: Moäät moùùng baêngê beàà roääng b = 2,5 m, chieààu saâuâ ñaëët moùùng laøø h = 1,5 m. Ñaáát neààn coùù goùùc ma saùùt trong ϕ = 20o , löïïc dính c = 10 Kpa, dung troïïng γ = 19 kN/m3. Taûûi troïïng ñaëët nghieângâ 10o so vôùùi phöông thaúúng ñöùùng. Xaùùc ñònh löïïc tôùùi haïïn theo phöông ñöùùng (Nth), vaøø theo phöông ngang (Tth) trong tröôøøng hôïïp möïïc nöôùùc ngaààm ôûû ñoää saâuâ 1m BAØØI TAÄÄP CHÖÔNG 5 BAI GIANG: CO HOC DAT Baøøi 3: Moäät truïï caààu coùù beàà roääng b = 6 m, choânâ saâuâ vaøøo ñaáát h = 4 m chịu tai N = 300T\m, ñaëët treânâ neààn ñaáát seùùt pha caùùt coùù goùùc ma saùùt trong ϕ = 18o, löïïc dính c = 300 Kpa, dung troïïng ñaååy noååi γñn = 9 kN/m3.Haõy õ kieååm tra ñoää oåån ñònh cuûûa neààn. BAØØI TAÄÄP CHÖÔNG 5 1BAI GIANG: CO HOC DAT GIAÛÛNG VIEÂN: Â ThS. TRAÀÀN MINH TUØØNG 98 NGOÂ TAÂ ÁÁT TOÁÁ QUAÄÄN BÌNH THAÏÏNH Tp HCM email: tientung2020@yahoo.com CHÖÔNG 6 BAI GIANG: CO HOC DAT AÙÙP LÖÏÏC ÑAÁÁT LEÂN TÂ ÖÔØØNG CHAÉÉN 1. NHÖÕNG KHAÕ ÙÙI NIEÄÄM CÔ SÔÛÛ ¾ Ñònh nghóa töôøøng chaéén – ba daïïng töôøøng chaéén chính ¾ Ba daïïng aùùp löïïc leânâ töôøøng chaéén-quan heää giöõaõ aùùp löïïc vaøø dòch chuyeåån ngang löng töôøøng 2. AÙÙP LÖÏÏC CHUÛÛ ÑOÄÄNG ÑAÁÁT RÔØØI TAÙÙC DUÏÏNG LEÂN Â TÖÔØØNG CHAÉÉN-LYÙÙ THUYEÁÁT COULOMB ¾ Caùùc giaûû thuyeáán cô sôûû ¾ Tính toaùùn aùùp löïïc ñaáát rôøøi leânâ töôøøng chaéén theo lyùù thuyeáát Coulomb BAI GIANG: CO HOC DAT 3. AÙÙP LÖÏÏC CHUÛÛ ÑOÄÄNG CUÛÛA ÑAÁÁT LEÂN TÂ ÖÔØØNG CHAÉÉN ¾ Khaùi nieäm veà traïng thaùi töông ñöông Caquot (Cacoâ) ¾AÙp löïc chuû ñoäng cuûa ñaát dính leân töôøng chaén 4. AÙÙP LÖÏÏC BÒ ÑOÄÄNG CUÛÛA ÑAÁÁT RÔØØI LEÂN TÂ ÖÔØØNG - PHÖÔNG PHAÙÙP COULOMB AÙÙP LÖÏÏC ÑAÁÁT LEÂN TÂ ÖÔØØNG CHAÉÉN 2BAI GIANG: CO HOC DAT NHÖÕNG KHAÕ ÙÙI NIEÄÄM CÔ SÔÛÛ KHAÙÙI NIEÄÄM TÖÔØØNG CHAÉÉN ĐẤT– BA DAÏÏNG TÖÔØØNG CHAÉÉN CHÍNH Töôøøng chaéén đất laøø coângâ trình duøøng ñeåå giöõõ oåån ñònh maùùi doáác ñaáát thaúúng ñöùùng hoaëëc gaààn thaúúng ñöùùng. Töôøøng chaéén ñöôïïc söûû duïïng roääng raõiõ trong caùùc coângâ trình xaâyâ döïïng daânâ duïïng CAÙÙC DAÏÏNG TÖÔØØNG CHAÉÉN TÖÔØØNG NAËËNG (TÖÔØØNG TROÏÏNG LÖÏÏC ) TÖÔØØNG BAÙÙN TROÏÏNG LÖÏÏC TÖÔØØNG COÏÏC BAÛÛN BAI GIANG: CO HOC DAT TÖÔØØNG NAËËNG (TÖÔØØNG TROÏÏNG LÖÏÏC ) C G E3 E2 A B E1 Gñaáát Thaân töôøng Ñaát ñaép laïi Loaïïi töôøøng naøøy giöõõ oåån ñònh khoáái ñaáát chuûû yeááu laøø döïïa vaøøo troïïng löôïïng chính baûûn thaânâ . Töôøøng thöôøøng ñöôïïc laøøm baèèng beââ toângâ hoaëëc ñaùù xaâyâ . BAI GIANG: CO HOC DAT TÖÔØØNG KIEÅÅU THÖÔÙÙC THÔÏÏ (TÖÔØØNG BAÙÙN TROÏÏNG LÖÏÏC) Loaïïi töôøøng naøøy giöõõ oåån ñònh khoáái ñaáát chuûû yeááu laøø döïïa vaøøo troïïng löôïïng cuûûa chính khoáái ñaáát beânâ treânâ baûûn ñaùùy Töôøøng thöôøøng ñöôïïc laøøm baèèng beââ toângâ coáát theùùp. G E3 E2 A B C E1 Gñaát Thaân töôøng Ñaát ñaép laïi Baûn ñaùy 3BAI GIANG: CO HOC DAT TÖÔØØNG KIEÅÅU COÏÏC BAÛÛN Loaïïi töôøøng naøøy giöõõ oåån ñònh khoáái ñaáát chuûû yeááu laøø döïïa vaøøo phaûûn löïïc cuûûa ñaáát ôûû chaânâ töôøøng. Töôøøng thöôøøng ñöôïïc laøøm baèèng beââ toângâ coáát theùùp, baèèng theùùp hay baèèng goãã. Thaânâ töôøøng E1 E2 BAI GIANG: CO HOC DAT NHÖÕNG KHAÕ ÙÙI NIEÄÄM CÔ SÔÛÛ BA DAÏÏNG AÙÙP LÖÏÏC LEÂN TÂ ÖÔØØNG CHAÉÉN-QUAN HEÄÄ GIÖÕA Õ AÙÙP LÖÏÏC VAØØ DÒCH CHUYEÅÅN NGANG LÖNG TÖÔØØNG Khi töôøøng chaéén ñöôïïc xaâyâ döïïng ñeåå giöõõ oåån ñònh maùùi ñaáát thì giöõaõ ñaáát vaøø töôøøng seõõ töông taùùc vôùùi nhau baèèng moäät aùùp löïïc E. Tuøøy theo chuyeåån vò töông ñoáái giöõaõ löng töôøøng ñaáát maøø daïïng aùùp löïïc maùùi ñaáát taùùc duïïng leânâ töôøøng chaéén seõõ khaùùc nhau. Coùù ba daïïng aùùp löïïc leânâ töôøøng chaéén laøø aùùp löïïc chuûû ñoääng (Ecñ), aùùp löïïc bò ñoääng (Ebñ) vaøø aùùp löïïc tónh (Et). BAI GIANG: CO HOC DAT O u (cm) E (kN/m) Ecñ Et Ebñ ucñ ubñ u < 0 ñaát chuû ñoäng ñaåy töôøng u > 0 ñaát bò töôøng eùp ñaåy E U >ubñ U <ucñ BA DAÏÏNG AÙÙP LÖÏÏC LEÂN TÂ ÖÔØØNG CHAÉÉN-QUAN HEÄÄ GIÖÕA Õ AÙÙP LÖÏÏC VAØØ DÒCH CHUYEÅÅN NGANG LÖNG TÖÔØØNG U = 0 4BAI GIANG: CO HOC DAT AÙÙp löïïc tónh ñaáát taùùc duïïng leânâ töôøøng chaéén laøø aùùp löïïc ñaáát taùùc duïïng leânâ töôøøng khi chuyeåàåàn dòch cuûûa töôøøng u = 0. AÙÙp löïïc chuûû ñoääng ñaáát taùùc duïïng leânâ töôøøng chaéén laøø aùùp löïïc ñaáát taùùc duïïng leânâ töôøøng khi chuyeåàåàn dòch cuûûa töôøøng ra xa maùùi ñaáát u ≥ ucñ. AÙÙp löïïc bò ñoääng ñaáát taùùc duïïng leânâ töôøøng chaéén laøø aùùp löïïc ñaáát taùùc duïïng leânâ töôøøng khi chuyeåån dòch cuûûa töôøøng veàà phía maùùi ñaáát u ≥ ubñ BA DAÏÏNG AÙÙP LÖÏÏC LEÂN TÂ ÖÔØØNG CHAÉÉN-QUAN HEÄÄ GIÖÕA Õ AÙÙP LÖÏÏC VAØØ DÒCH CHUYEÅÅN NGANG LÖNG TÖÔØØNG BAI GIANG: CO HOC DAT AÙÙP LÖÏÏC CHUÛÛ ÑOÄÄNG ÑAÁÁT RÔØØI TAÙÙC DUÏÏNG LEÂN TÂ ÖÔØØNG CHAÉÉN-LYÙÙ THUYEÁÁT COULOMB Caùùc giaûû thuyeáát cô sôûû Xeùùt moäät meùùt theo chieààu daøøi töôøøng. Khi ñaáát ñaååy töôøøng chaéén dòch chuyeåån thì trong ñaáát xuaáát hieään maëët tröôïït phaúúng BC. Laêngê theåå tröôïït (ABCx1) ôûû traïïng thaùùi caânâ baèèng tónh (traïïng thaùùi caânâ baèèng giôùùi haïïn). Maët tröôït phaúngH E β α δ B A C θR ϕ G E GR Vieääc tính toaùùn aùùp löïïc ñaáát leânâ töôøøng döïïa treânâ cô sôûû xeùùt caânâ baèèng tónh cuûûa laêngê theåå tröôïït (ABCx1). BAI GIANG: CO HOC DAT TÍNH TOAÙÙN AÙÙP LÖÏÏC ÑAÁÁT RÔØØI LEÂN TÂ ÖÔØØNG CHAÉÉN THEO LYÙÙ THUYEÁÁT COULOMB Tính toaùùn aùùp löïïc ñaáát rôøøi leânâ töôøøng chaéén theo lyùù thuyeáát Coulomb Xeùùt söïï caânâ baèèng cuûûa laêngê theåå tröôïït (söïï caânâ baèèng cuûûa caùùc löïïc G, E, R) ta ruùùt ra ñöôïïc bieååu thöùùc xaùùc ñònh E E = f(θ) Maët tröôït phaúngH E β α δ B A C θR ϕ G E GR od dE θθθ =→= 0 löïïc chuûû ñoääng cuûûa ñaáát leânâ töôøøng 5BAI GIANG: CO HOC DAT Coângâ thöùùc ñeåå tính aùùp löïïc chuûû ñoääng cuûûa ñaáát laøø: Ea = 0,5.λa.γ.H2 γ - troïïng löôïïng rieângâ cuûûa ñaáát. TÍNH TOAÙÙN AÙÙP LÖÏÏC ÑAÁÁT RÔØØI LEÂN TÂ ÖÔØØNG CHAÉÉN THEO LYÙÙ THUYEÁÁT COULOMB λa- heää soáá aùùp löïïc chuûû ñoääng 2 2 2 )cos()cos( )sin()sin(1)cos(cos )(cos ⎥⎦ ⎤⎢⎣ ⎡ −+ −+++ −= αβαδ βϕδϕαδα αϕλa ϕ - goùùc ma saùùt trong cuûûa ñaáát. δ - goùùc ma saùùt giöõaõ ñaáát vaøø töôøøng chaéén Maët tröôït phaúngH E β α δ B A C θR ϕ G E GR BAI GIANG: CO HOC DAT TÍNH TOAÙÙN AÙÙP LÖÏÏC ÑAÁÁT RÔØØI LEÂN TÂ ÖÔØØNG CHAÉÉN THEO LYÙÙ THUYEÁÁT COULOMB Maët tröôït phaúngH E β α δ B A C θR ϕ G E GR 2 2 2 )cos()cos( )sin()sin(1)cos(cos )(cos ⎥⎦ ⎤⎢⎣ ⎡ −+ −+++ −= αβαδ βϕδϕαδα αϕλa Trong ñieààu kieään ñôn giaûûn nhaáát: α = β = δ = 0 ta coùù: λa = tg2(45o - ϕ/2) Phaânâ boáá aùùp löïïc ñaáát theo chieààu cao töôøøng: pa = λa. γ.z BAI GIANG: CO HOC DAT TÍNH TOAÙÙN AÙÙP LÖÏÏC ÑAÁÁT RÔØØI LEÂN TÂ ÖÔØØNG CHAÉÉN THEO LYÙÙ THUYEÁÁT COULOMB •Tröôøng hôïp treân maët ñaát coù taûi troïng thaúng ñöùng phaân boá ñeàu cöôøng ñoä q: H λa.γ.(H + q/γ) λa.q Ea q Bieååu ñoàà aùùp suaáát ñaáát taùùc duïïng leânâ löng töôøøng trong tröôøøng hôïïp α = β = δ = 0 nhö hình veõõ AÙÙp löïïc chuûû ñoääng cuûûa ñaáát laøø: Ea = 0,5.λa.γ.H2 + q .λa.H Heää soáá λa xaùùc ñònh nhö treânâ . 6BAI GIANG: CO HOC DAT Tröôøng hôïp ñaát sau löng töôøng goàm nhieàu lôùp ñaép laïi song song TÍNH TOAÙÙN AÙÙP LÖÏÏC ÑAÁÁT RÔØØI LEÂN TÂ ÖÔØØNG CHAÉÉN THEO LYÙÙ THUYEÁÁT COULOMB H λa1.γ1.h1 h2 h1 λa2.γ2.h2 λa2.γ1.h1 Lôùùp ñaáát 1 Lôùùp ñaáát 2 ϕ1γ1 ϕ2γ2 Ea2 Ea1 Giaûû thuyeáát lôùùp ñaáát döôùùi khoângâ aûûnh höôûûng ñeáán lôùùp ñaáát vaøø töôøøng beânâ treânâ . Bieååu ñoàà aùùp suaáát do ñaáát ôûû lôùùp ñaáát beânâ treânâ taùùc duïïng leânâ töôøøng Ea1 = 0,5.λa1.γ1.h12 BAI GIANG: CO HOC DAT TÍNH TOAÙÙN AÙÙP LÖÏÏC ÑAÁÁT RÔØØI LEÂN TÂ ÖÔØØNG CHAÉÉN THEO LYÙÙ THUYEÁÁT COULOMB •Tröôøng hôïp coù möïc nöôùc ngaàm tónh Khi ñaáát ôûû löng töôøøng coùù möïïc nöôùùc ngaààm tónh Xem ñaáát phía löng töôøøng goààm coùù hai lôùùp ñaáát (lôùùp ñaáát treânâ möïïc nöôùùc ngaààm vaøø lôùùp ñaáát döôùùi möïïc nöôùùc ngaààm) AÙÙp duïïng tröôøøng hôïïp löng töôøøng coùù hai lôùùp ñaáát ñaéép ñeåå xaùùc ñònh aùùp löïïc ñaáát vaøø töôøøng. BAI GIANG: CO HOC DAT TÍNH TOAÙÙN AÙÙP LÖÏÏC ÑAÁÁT RÔØØI LEÂN TÂ ÖÔØØNG CHAÉÉN THEO LYÙÙ THUYEÁÁT COULOMB •Tröôøng hôïp coù möïc nöôùc ngaàm tónh . Bieààu ñoàà aùùp suaáát ñaáát taùùc duïïng leânâ löng töôøøng trong tröôøøng hôïïp α = β = δ = 0 nhö hình veõõ H λa1.γ1.h1 h2 h1 λa2.γ2.h2 λa2.γ1.h1 Lôùùp ñaáát 1 ϕ1γ1 Ea2 Ea1 7BAI GIANG: CO HOC DAT TÍNH TOAÙÙN AÙÙP LÖÏÏC ÑAÁÁT RÔØØI LEÂN TÂ ÖÔØØNG CHAÉÉN THEO LYÙÙ THUYEÁÁT COULOMB Tröôøøng hôïïp löng töôøøng gaõyõ khuùùc Xem ñaáát löng töôøøng goààm coùù nhieààu phaààn (moãiã phaààn öùùng vôùùi moãiã ñoaïïn töôøøng thaúúng) vaøø aùùp duïïng tröôøøng hôïïp löng töôøøng coùù nhieààu lôùùp ñaáát. δ1 pa1 = λa1. γ1.h1 Ea1 δ2 h1 h2 pa2 = λa2. γ1.h1 + λa2. γ2.h2 Ea2 α1 α2 BAI GIANG: CO HOC DAT AÙÙP LÖÏÏC ÑAÁÁT DÍNH LEÂN TÂ ÖÔØØNG CHAÉÉN Khaùùi nieääm veàà traïïng thaùùi töông ñöông Caquot AÙÙp duïïng keáát quaûû cuûûa baøøi toaùùn tính aùùp löïïc chuûû ñoääng ñaáát rôøøi taùùc duïïng leânâ töôøøng chaéén cho tröôøøng hôïïp ñaáát dính, ta xem ñaáát dính (C,ϕ soil) nhö ñaáát rôøøi (ϕ soil) coääng vôùùi σc taùùc duïïng nhö trong chaáát loûûng Bieååu thöùùc söùùc choááng caéét cuûûa ñaáát dính quy ñoååi veàà ñaáát rôøøi laøø: τgh = σ.tgϕ + c = (σ + c/tgϕ).tgϕ Ñaëët c/ tgϕ = σc: - öùùng suaáát dính töông ñöông. BAI GIANG: CO HOC DAT KHAÙÙI NIEÄÄM VEÀÀ TRAÏÏNG THAÙÙI TÖÔNG ÑÖÔNG CAQUOT c σc ϕ σ (Kpa) τgh KPa τgh = (σ + c/tgϕ).tgϕ O σ (Kpa)O’ ϕ τgh KPa τgh = (σ + σc).tgϕ 8BAI GIANG: CO HOC DAT AÙÙP LÖÏÏC CHUÛÛ ÑOÄÄNG CUÛÛA ÑAÁÁT DÍNH LEÂN TÂ ÖÔØØNG CHAÉÉN AÙÙp löïïc chuûû ñoääng ñaáát dính taùùc duïïng leânâ töôøøng chaéén ñöôïïc tính toaùùn baèèng caùùch thay ñaáát dính baèèng ñaáát rôøøi töông ñöông λa.γ.H H σc σc σc.λa σc ϕ soil C, ϕ soil + = (λa-1).σc+γ.H. λa (λa-1).σc ho + ho = Ea BAI GIANG: CO HOC DAT AÙÙP LÖÏÏC BÒ ÑOÄÄNG CUÛÛA ÑAÁÁT RÔØØI - PHÖÔNG PHAÙÙP COULOMB Caùùc giaûû thuyeáát cuûûa Coulomb - Khi töôøøng chaéén ñaååy ñaáát löng töôøøng dòch chuyeåån thì trong ñaáát xuaáát hieään maëët tröôïït phaúúng BC Laêngê theåå tröôïït ôûû traïïng thaùùi caânâ baèèng tónh (traïïng thaùùi caânâ baèèng giôùùi haïïn). Vieääc tính toaùùn aùùp löïïc ñaáát taùùc duïïng leânâ töôøøng chaéén döïïa treânâ cô sô xeùùt caânâ baèèng tónh cuûûa laêngê theåå tröôïït ABC. H E Maët tröôït phaúng β α δ B A C θ Rϕ G BAI GIANG: CO HOC DAT Keáát quaûû tính toaùùn cuûûa Coulomb AÙÙP LÖÏÏC BÒ ÑOÄÄNG CUÛÛA ÑAÁÁT RÔØØI - PHÖÔNG PHAÙÙP COULOMB Xeùùt caânâ baèèng cuûûa caùùc löïïc theo phöông ngang vaøø phöông ñöùùng ta ñöôïïc E = f(θ). Giaùù trò lớn nhaáát cuûûa E(θ) chính laøø aùùp löïïc bò ñoääng ñaáát taùùc duïïng leânâ töôøøng: Max E(θ) = Ebñ Theo Coulomb ta coùù: Ebñ = 0,5.λbñ.γ.H2λbñ – heää soáá aùùp löïïc bò ñoääng phuïï thuoääc vaøøo α, β, δ vaøø goùùc ma saùùt trong ϕ cuûûa ñaáát ôûû löng töôøøng. Trong tröôøøng hôïïp ñôn giaûûn α = β = δ = 0 ta coùù: λbñ = tg2(45o + ϕ/2) 9BAI GIANG: CO HOC DAT AÙÙP LÖÏÏC ÑAÁÁT VAØØ TÖÔØØNG CHAÉÉN - LYÙÙ THUYEÁÁT CAÂN BAÂ ÈÈNG GIÔÙÙI HAÏÏN BAI GIANG: CO HOC DAT AÙÙP LÖÏÏC ÑAÁÁT VAØØ TÖÔØØNG CHAÉÉN - LYÙÙ THUYEÁÁT CAÂN BAÂ ÈÈNG GIÔÙÙI HAÏÏN BAI GIANG: CO HOC DAT AÙÙP LÖÏÏC ÑAÁÁT VAØØ TÖÔØØNG CHAÉÉN - LYÙÙ THUYEÁÁT CAÂN BAÂ ÈÈNG GIÔÙÙI HAÏÏN 10 BAI GIANG: CO HOC DAT AÙÙP LÖÏÏC ÑAÁÁT VAØØ TÖÔØØNG CHAÉÉN - LYÙÙ THUYEÁÁT CAÂN BAÂ ÈÈNG GIÔÙÙI HAÏÏN BAI GIANG: CO HOC DAT
File đính kèm:
- bai_giang_co_hoc_dat_tran_minh_tung.pdf