Bài giảng Hệ thống rơle bảo vệ nhà máy điện và trạm biến áp - Nguyễn Xuân Tùng
Tóm tắt Bài giảng Hệ thống rơle bảo vệ nhà máy điện và trạm biến áp - Nguyễn Xuân Tùng: ... có thể tác động nhầm. Khi thanh góp có điện trở lại: các tải này không được tự động đóng điện do khi bị sa thải theo tần số thì thiết bị TĐL sẽ không hoạt động 105 Các yếu tố ảnh hưởng Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xu...ng điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Cài đặt Dòng so lệch ngưỡng thấp Idiff> Độ dốc bằng không (không hãm) Đặt cao hơn dòng so lệch xuất hiện ở chế độ bình thường Có thể tính tới ảnh hưởng của đầu phân áp (... Điện áp do MFĐ sinh ra có cả thành phần bậc 3 Thành phần bậc 3 có tính chất như thành phần TTK 247 Bảo vệ chống chạm đất 100% Phần bố điện áp bậc 3 lúc bình thường Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ ...
ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Các phương thức bảo vệ thanh góp Sơ đồ khóa liên động Thường dùng ở lưới phân phối (một đường cấp tới TG) Yêu cầu một khoảng phân cấp thời gian ngắn Tín hiệu khóa có thể nối trực tiếp giữa các rơle (dây đồng) 313 Bảo vệ các hệ thống thanh góp 50 50 50 50 50 50 B L O C K Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Các phương thức bảo vệ thanh góp Bảo vệ so lệch tổng trở cao Các BI phải có cùng tỷ số biến Yêu cầu các biến dòng cấp X Thiết bị hạn chế quá áp bảo vệ cho rơle 314 Bảo vệ các hệ thống thanh góp 59 Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Các phương thức bảo vệ thanh góp Bảo vệ so lệch tổng trở cao Nguyên lý 315 Bảo vệ các hệ thống thanh góp Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Các phương thức bảo vệ thanh góp Bảo vệ so lệch tổng trở thấp Sử dụng nguyên lý hãm Dòng hãm: tổng dòng, dòng lớn nhất, một phần tổng dòng.. Không yêu cầu BI cấp X 316 Bảo vệ các hệ thống thanh góp 5187 Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Đặc điểm: Số lượng ngăn lộ lớn số lượng tín hiệu, dây dẫn lớn sử dụng cấu trúc phân tán Cơ chế kiểm tra chống tác động nhầm: check zone Dễ gặp hiện tượng bão hòa máy biến dòng 317 Bảo vệ các hệ thống thanh góp Vùng bảo vệ Sự cố trong vùng bảo vệ Vùng bảo vệ Sự cố ngoài vùng bảo vệ Bão hòa Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Đặc tính làm việc của rơle REB 670 Độ dốc cố định Dòng so lệch ngưỡng thấp thay đổi tùy đặt 318 Bảo vệ các hệ thống thanh góp Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Đặc tính tác động độ nhạy cao Trang bị thêm đặc tính độ nhạy cao: hạ thấp đặc tính làm việc Kích hoạt thông qua đầu vào nhị phân (Binary Input) Sử dụng ở các lưới có dòng chạm đất bé 319 Bảo vệ các hệ thống thanh góp Cài đặt: Dòng khởi động ngưỡng thấp: nhỏ hơn dòng ngắn mạch min Lớn hơn dòng tải max của một ngăn lộ (tránh tác động khi hư hỏng mạch dòng) Có thể kết hợp khóa U0> để giảm dòng đặt Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Chức năng kiểm tra vùng bảo vệ (check zone) Khi mạch dòng từ một ngăn lộ hỏng dòng so lêch bằng chính dòng tải ngăn lộ đó rơle tác động nhầm. Giải pháp: Dòng khởi động lớn hơn Itải max: giảm độ nhạy Sử dụng chức năng check zone 320 Bảo vệ các hệ thống thanh góp Chỉ tác động khi: bảo vệ vùng & bảo vệ check zone cùng tác động Hệ thống kích từ máy phát điện Phần 8 321 Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN 322 Các mạch vòng điều khiển cơ bản của MFĐ LFC Controller: Thiết bị điều tần Frequency Sensor: cảm biến đo tần số AVR: bộ tự động điều chỉnh điện áp máy phát Excitation system: Phần kích từ của máy phát Turbine: Tua bin; Shaft: trục nối Steam: hơi vào tua bin Valve control mechanism: Cơ cấu điều chỉnh độ mở van năng lượng vào tua bin Thời gian đáp ứng của mạch kích từ ngắn hơn rất nhiều so với mạch điều khiển tua bin, do đó hai phần điều khiển có thể coi là hai mạch vòng độc lập. Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN 323 Điều chỉnh kích từ và điện áp máy phát điện Sơ đồ chi tiết của mạch vòng điều khiển kích từ Step-up transformer: biến áp tăng áp đầu cực MFĐ Step-down Transformer: biến áp giảm áp cấp cho hệ thống tự dùng và kích từ Exciter: cuộn kích từ Auxilliary services: Hệ thống tự dùng AVR: bộ điều khiển kích từ (điều chỉnh điện áp) Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Hệ thống kích từ có thể chia ra 3 loại: Hệ thống kích từ một chiều (DC) Hệ thống kích từ xoay chiều (AC) – Không vành trượt. Hệ thống kích từ dùng chỉnh lưu trực tiếp 324 Các loại hệ thống kích từ Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN 1. Hệ thống kích từ một chiều (DC): 325 Các loại hệ thống kích từ Hệ thống kích từ một chiều: hiện tại vẫn còn tồn tại, thường dùng cho các máy phát có công suất <100MVA. Hệ thống gồm 02 máy phát một chiều quay cùng trục với máy phát chính: Máy phát kích từ chính (ME): cấp điện áp kích từ cho máy phát chính Máy phát kích từ phụ (AE): cấp kích từ cho máy phát kích từ chính ME Máy kích từ phụ được kích từ bằng dòng điện qua bộ điều khiển kích từ AVR Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN 1. Hệ thống kích từ một chiều (DC): 326 Các loại hệ thống kích từ Công suất của nguồn cấp cho kích từ máy phát phụ và thiết bị chỉnh lưu có điều khiển rất nhỏ (hệ thống hai máy phát một chiều có thể cung cấp khả năng khuyếch đại công suất tới tỷ số 600/1) Nhược điểm: Thời gian đáp ứng chậm Do vẫn dùng chổi than-vành góp nên thường xuyên phải thay thế. Vẫn sử dụng hệ thống vành trượt đưa công suất kích từ vào máy phát chính. Hệ thống này đang dần dần bị thay thế bởi các hệ thống kích từ thế hệ sau Vành góp Vành trượt (slip ring) Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN 2. Hệ thống kích từ xoay chiều (AC) – Không vành trượt: 327 Các loại hệ thống kích từ Không cần hệ thống vành trượt, vành góp Thời gian đáp ứng của quá trình điều chỉnh nhanh hơn Công suất của hệ thống nguồn kích từ nhỏ (1/20 (30)) Hệ thống vẫn được sử dụng trong công nghiệp vì không yêu cầu một nguồn kích từ riêng biệt quá lớn Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN 3. Hệ thống kích từ dùng chỉnh lưu trực tiếp: 328 Các loại hệ thống kích từ Nguồn cấp cho hệ thống kích từ có thể lấy từ đầu cực máy phát hoặc từ hệ thống tự dùng Cần có biến kích từ để biến đổi điện áp cho phù hợp Một giải pháp khác: lấy công suất cấp cho kích từ từ hệ thống biến dòng điện và biến điện áp – Với giải pháp nà : điệ áp cấp cho kích từ ít bị ảnh hưởng bởi ngắn mạch gần hoặc sụt giảm điện áp đầu cực. Máy phát MBA kích từ Từ hệ thống tự dùng Từ đầu cực máy phát Vành trượt Máy phát Biến điện áp (BU) Biến dòng điện (BI) Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN 3. Hệ thống kích từ dùng chỉnh lưu trực tiếp: 329 Các loại hệ thống kích từ Để giảm tổn thất trong bộ hệ thống kích từ: dùng hai bộ chỉnh lưu có điều khiển Một bộ dùng trong chế độ bình thường (chế độ xác lập) Một bộ dùng trong chế độ cần cung cấp kích từ cưỡng bức (cường hành kích thích) Thời gian đáp ứng điều khiển nhanh. Trong chế độ diệt từ: bộ chỉnh lưu có thể điều khiển trở thành bộ nghịch lưu tiêu thụ năng lượng thừ trong cuộn roto. Cường hành kích thích Kích từ ở chế độ bình thường MBA kích từ Tới cuộn kích từ máy phát chính Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN 330 Các chế độ vận hành của bộ điều khiển kích từ Bộ kích từ cho phép điều khiển máy phát với các chế độ vận hành khác nhau Chế độ duy trì điện áp đầu cực (AVR): Điện áp được duy trì không đổi Dùng khi máy phát làm nhiệm vụ giữ điện áp nút hoa tiêu Hoặc khi máy phát vận hành độc lập Chế độ duy trì hệ số công suất (PF): Điều khiển lượng Q phát ra tỷ lệ với lượng P đang phát duy trì cosϕ Có thể dùng khi máy phát nối lưới Chế độ duy trì lượng công suất phản kháng (VAR) : Lượng công suất phản kháng của máy phát được duy trì không đổi Có thể dùng khi máy phát nối lưới Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Sơ đồ khối của thiết bị tự động điều chỉnh điện áp máy phát 331 Thiết bị tự động điều chỉnh điện áp MFĐ (AVR) Khâu đo lường: đo tần số, dòng điện, điện áp, tốc độ quay Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Bộ phận bù tải: được sử dụng khi cần điều khiển giữ không đổi điện áp tại nút phụ tải phía xa. Điện áp rơi trên tổng trở từ máy phát đến tải: Với: Vc: điện áp cần bù Vg: điện áp đầu cực máy phát Rc & Xc: tổng trở từ máy phát đến tải Khi không cần bù tải: đặt Rc=0; Xc=0 khi đó sẽ giữ điện áp tại đầu cực máy phát 332 Thiết bị tự động điều chỉnh điện áp MFĐ (AVR) Bộ so sánh Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Bộ giới hạn dòng kích từ: giới hạn dòng kích từ cực đại và cực tiểu Cuộn kích từ bị giới hạn về mặt phát nóng do đó phải giới hạn dòng kích từ cực đại Với các hệ thống hiện đại: sử dụng hệ thống giới hạn dòng kích từ cực đại nhiều bậc: dòng kích từ lớn nhất cho phép tùy thuộc vào khoảng thời gian tồn tại. Hệ thống giới hạn dòng kích từ là cần thiết để ngăn ngừa quá tải khi máy phát làm việc với hệ thống: tránh trường hợp thiếu công suất phản kháng lớn và máy phát sẽ cố điều chỉnh để bù lại sự thiếu hụt này. 333 Thiết bị tự động điều chỉnh điện áp MFĐ (AVR) Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Bộ giới hạn dòng kích từ: giới hạn dòng kích từ cực đại và cực tiểu Giới hạn dòng kích từ cực tiểu: cần thiết phải giữ một ngưỡng tối thiểu của dòng kích từ để tránh trường hợp máy phát dễ bị mất đồng bộ Bộ nâng cao ổn định (PSS): có tác dụng điều khiển để tắt nhanh các dao động điện trong hệ thống Tín hiệu đầu vào của bộ PSS có thể là tốc độ roto, tần số dòng điện phát ra và công suất tác dụng thực phát. Bộ PSS đưa thêm tín hiệu điều khiển vào mạch điều chỉnh điện áp. 334 Thiết bị tự động điều chỉnh điện áp MFĐ (AVR) Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Sơ đồ khối chi tiết khác 335 Thiết bị tự động điều chỉnh điện áp MFĐ (AVR) Follow up Unit: Đảm bảo sự chuyển đổi mềm giữa chế độ tự động/chỉnh tay Với các hệ thống kích từ kép (hai nhánh kích từ riêng): một nhánh được điều chỉnh chủ động, nhánh còn lại điều chỉnh phụ thuộc theo (follow up) Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Mạch điện áp đầu vào bộ ĐK kích từ có vai trò rất quan trọng Mất tín hiệu điện áp Bộ điều khiển có thể nhầm lẫn và tăng tối đa dòng kích từ Giải pháp: dùng 2 BU đầu vào và có rơle kiểm tra điện áp (60) Rơle kiểm tra điện áp (60): phát hiện đứt cầu chì và chuyển bộ điều khiển sang chế độ manual hoặc chuyển sang lấy tín hiệu từ BU còn tốt. Thông thường 1 BU dùng cho mạch điều khiển kích từ BU còn lại dùng cho mạch bảo vệ, đo lường Để tranh đột biến khi chuyển chế độ: nên trang bị chức năng Automatic Tracking để chế độ manual có thể bám sát thông số của chế độ tự đông trước khi mất điện áp. 336 Mạch điện áp đầu vào Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Mạch điện áp đầu vào bộ ĐK kích từ có vai trò rất quan trọng Trường hợp chỉ có 1 BU đầu vào Dùng rơle điện áp thấp để phát hiện mất điện áp đầu vào chuyển sang chế độ manual (rơle này sẽ tạm khóa khi máy phát khởi động) Chỉnh định thấp hơn giá trị thường gặp ở vận hành bình thường Có thể kết hợp với rơle quá điện áp thứ tự nghịch (47) để phát hiện mất cân bằng điện áp (đứt cầu chí 1 pha mạch áp) 337 Mạch điện áp đầu vào Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Mạch điện áp đầu vào bộ ĐK kích từ có vai trò rất quan trọng Trường hợp chỉ có 1 BU đầu vào Giải pháp khác: sử dụng rơle giám sát hiện tượng đứt cầu chì (60FL – Fuse Loss) Rơle tác động chuyển chế độ vận hành sang manual khi: Điện áp thứ tự nghịch vượt quá ngưỡng (chì báo đứt cầu chì) Dòng điện đo được trong ngưỡng bình thường khẳng định sự kiện đứt cầu chì 338 Mạch điện áp đầu vào Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Hệ thống kích từ của nhà máy thủy điện Hòa Bình 339 Ví dụ về hệ thống kích từ Hòa đồng bộ các nguồn điện Phần 9 Automatic Synchronization Chức năng kiểm tra đồng bộ (25) 340 Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Là thao tác cần thiết để đưa máy phát điện vào làm việc cùng với hệ thống – hoặc để kết nối giữa hai hệ thống. Yêu cầu: dòng điện cân bằng trong lúc hòa đồng bộ phải nhỏ nhất, giảm thiểu sụt áp và dao động công suất 341 Hòa đồng bộ trong hệ thống điện Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Sơ đồ hòa đồng bộ Trình tự thao tác Máy phát được kích từ - quay tới tốc độ đồng bộ Kiểm tra các điều kiện hòa Cùng thứ tự pha Điện áp bằng nhau: Tốc độ góc (tần số) bằng nhau: Góc lệch tương đối giữa vecto điện áp hai phía bằng không: Khi các điều kiện hòa đảm bảo: đóng máy cắt hòa 342 Phương pháp hòa đồng bộ chính xác H F U U H F db 0, H F U U Góc lệch H F H U F U Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Dòng điện cân bằng xuất hiện tại thời điểm hòa 343 Phương pháp hòa đồng bộ chính xác cb IHX dX H E F E Sơ đồ thay thế Độ lớn dòng điện cân bằng Icb: H F cb H d E E I X X Để đơn giản, giả thiết độ lớn EF=EH=E và căn cứ theo đồ thị vecto: 2 2 sin H F cb H d H d H d E E E E I X X X X X X H E F E E E E 2 Độ lớn dòng điện Icb phụ thuộc vào góc lệch giữa hai vecto điện áp ( ) 2 sin Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Dòng cân bằng nhỏ nhất: Vậy thời điểm thuận lợi nhất để đóng máy cắt hòa đồng bộ là khi góc lệch: 344 Phương pháp hòa đồng bộ chính xác 0 0 02 0 0 0 360 720 2 2 min min sin sin ; ; ... cb H d E I X X 0 0 00 360 720; ; ... Dòng cân bằng lớn nhất: Thường hệ thống có công suất vô cùng lớn so với máy phát: có thể coi XH=0; khi đó Vậy thời điểm bất lợi nhất: khi góc lệch iữa vecto điện áp hai phía là 1800 và dòng Icbmax có thể gấp 2 lần dòng ngắn mạch 3 pha đầu cực máy phát 02 2 1 180 2 2 max max sin sin cb H d H d E E I X X X X 3 02 2 180( ) maxcb N daucucMF d E I I X Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Vai trò của điện áp phách US (điện áp trượt) trong quá trình hòa Với giả thiết EH=EF=E Điện áp phách biến thiên với hai tần số khác nhau: 345 Phương pháp hòa đồng bộ chính xác ( ) ( ) ( ) sin( ) sin( ) S H F H H F F u t u t u t E t E t 2 2 2 2 2 2 ( ) cos sin cos sin SH F H F H F S u t E t t E t t Với: định nghĩa là tốc độ trượtS H F -400 -300 -200 -100 0 100 200 300 400 y RMSuS(t) (t) 2 cos H F t 2 sin S t Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Giá trị điện áp phách quan sát được là đường bao biên độ Vì là tốc độ trượt nên đại lượng chính là góc lệch tương đối giữa hai vecto điện áp theo thời gian. Chu kz của điện áp phách thay đổi do trong quá trình hòa luôn có những thao tác điều chỉnh sao cho tốc độ góc của máy phát gần nhất với phía hệ thống Thời điểm thuận lợi để hòa: khi Us=0 346 Phương pháp hòa đồng bộ chính xác uS(t) (t) 2 2 2 2 sin sinS S U E t E S ( )S t Us=0: Thời điểm thuận lợi ( )0360 Us=0: Thời điểm thuận lợi ( )0720 Us=0: Thời điểm thuận lợi ( )00 Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Do việc đóng máy cắt cần một khoảng thời gian tđóng MC: xung đóng phải gửi trước thời điểm thuận lợi một khoảng thời gian vượt trước tvượt trước = tđóng MC Thời gian vượt trước có thể qui đổi tính theo góc vượt trước (độ) nếu tốc độ trượt cho phép khi hòa đòng bộ đã biết: 347 Phương pháp hòa đồng bộ chính xác uS(t) (t) Thuận lợiGửi xung đóng tđóng MC Thuận lợiGửi xung đóng tđóng MC Thuận lợiGửi xung đóng tđóng MC vt scp vt scp dongMC t t Góc vượt trước Tốc độ trượt cho phép Thời gian vượt trước (chính là thời gian đóng MC) Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Nguyễn Xuân Tùng – Bộ môn Hệ thống điện ĐHBK HN Mô hình điều khiển quá trình hòa (thiết bị cũ) 348 Phương pháp hòa đồng bộ chính xác
File đính kèm:
- bai_giang_he_thong_role_bao_ve_nha_may_dien_va_tram_bien_ap.pdf