Bài giảng Lý thuyết điều khiển tự động - Võ Văn Định
Tóm tắt Bài giảng Lý thuyết điều khiển tự động - Võ Văn Định: ... phép tương đương sơ đồ khối thường dùng là: Chuyển vị trí hai bộ tổng: x4 = (x1 - x2) + x3 x4 = (x1 + x3) - x2 x1 x2 x3 x4 x1 x2 x3 x4 61 2.2 HÀM TRUYỀN ĐẠT VÀ ĐẠI SỐ SƠ ĐỒ KHỐI 2.2.3 Đại số sơ đồ khối b. Hàm truyền đạt của hệ thống biểu diễn... 121 1000 0100 0010 aaaa A nnn 98 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.3 Thành lập hệ phƣơng trình trạng thái từ phƣơng trình vi phân • Quy tắc đặt biến trạng thái Vế phải của phương trì...̣ pha 135 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.4 Thành lập hệ phƣơng trình trạng thái từ hàm truyền và sơ đồ khối Xét phƣơng trình (2.70), ta đặt các biến trạng thái nhứ sau: 1 1 1 123 12 1 )( )()( (2....
h đặt biến trạng thái nhƣ hình vẽ, ta có các quan hệ sau: )( 3 10 )( 21 sX s sX )(10)(3)( 211 sXsXssX (2.76) )(10)(3)( 211 txtxtx 148 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.4 Thành lập hệ phƣơng trình trạng thái từ hàm truyền và sơ đồ khối Giải: C- Phương pháp đặt biến trạng thái trực tiếp trên sơ đồ )( 1 1 )( 32 sX s sX )()()( 322 sXsXssX (2.77) )()()( 322 txtxtx 149 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.4 Thành lập hệ phƣơng trình trạng thái từ hàm truyền và sơ đồ khối Giải: C- Phương pháp đặt biến trạng thái trực tiếp trên sơ đồ )()(1)(3 sCsR s sX )()()( 13 sXsRssX (2.78) )()()( 13 trtxtx 150 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.4 Thành lập hệ phƣơng trình trạng thái từ hàm truyền và sơ đồ khối Giải: C- Phương pháp đặt biến trạng thái trực tiếp trên sơ đồ Kết hợp (2.76), (2.77) và (2.78) ta đƣợc hệ phƣơng trình trạng thái: (2.79) )(. 1 0 0 )( )( )( 001 110 0103 )( )( )( 3 2 1 3 2 1 tr tx tx tx tx tx tx 151 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.4 Thành lập hệ phƣơng trình trạng thái từ hàm truyền và sơ đồ khối Giải: C- Phương pháp đặt biến trạng thái trực tiếp trên sơ đồ Đáp ứng của hệ thống: )( )( )( .001)()( 3 2 1 1 tx tx tx txtc 152 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.4 Thành lập hệ phƣơng trình trạng thái từ hàm truyền và sơ đồ khối C- Phương pháp đặt biến trạng thái trực tiếp trên sơ đồ Ví dụ 2: Hãy thành lập hệ phƣơng trình trạng thái mô tả hệ thống có sơ đồ khối nhƣ sau: R(s) C(s) 4 3 s 5 2 s s 6 1 s s E(s) X2(s) X1(s) X3(s) 153 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.4 Thành lập hệ phƣơng trình trạng thái từ hàm truyền và sơ đồ khối Giải: C- Phương pháp đặt biến trạng thái trực tiếp trên sơ đồ Với các biến trạng thái nhƣ sơ đồ khối, ta có các quan hệ sau: )( 5 2 )( 21 sX s s sX (2.80) )()(2)(5)( 2211 ssXsXsXssX 154 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.4 Thành lập hệ phƣơng trình trạng thái từ hàm truyền và sơ đồ khối Giải: C- Phương pháp đặt biến trạng thái trực tiếp trên sơ đồ )()( 4 3 )( 4 3 )( 322 sXsR s sE s sX (2.81) )(3)(3)(4)( 322 sRsXsXssX )( 6 1 )( 13 sX s s sX (2.82) )()(6)()( 1313 ssXsXsXssX 155 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.4 Thành lập hệ phƣơng trình trạng thái từ hàm truyền và sơ đồ khối Giải: C- Phương pháp đặt biến trạng thái trực tiếp trên sơ đồ Thay sX2(s) ở biểu thức (2.81) vào biểu thức (2.80) ta đƣợc: )(3)(3)(4)(2)(5)( 32211 sRsXsXsXsXssX (2.83) )(3)(3)(2)(5)( 3211 sRsXsXsXssX 156 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.4 Thành lập hệ phƣơng trình trạng thái từ hàm truyền và sơ đồ khối Giải: C- Phương pháp đặt biến trạng thái trực tiếp trên sơ đồ Thay sX1(s) ở biểu thức (2.83) vào biểu thức (2.82) ta đƣợc: )(3)(3)(2)(5)(6)()( 321313 sRsXsXsXsXsXssX (2.84) )(3)(9)(2)(4)( 3213 sRsXsXsXssX 157 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.4 Thành lập hệ phƣơng trình trạng thái từ hàm truyền và sơ đồ khối Giải: C- Phương pháp đặt biến trạng thái trực tiếp trên sơ đồ Từ các biểu thức (2.81), (2.82) và (2.84) ta suy ra hệ phƣơng trình trạng thái: )(3)(9)(2)(4)( )(3)(3)(4)( )(3)(3)(2)(5)( 3213 322 3211 trtxtxtxtx trtxtxtx trtxtxtxtx 158 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.4 Thành lập hệ phƣơng trình trạng thái từ hàm truyền và sơ đồ khối Giải: C- Phương pháp đặt biến trạng thái trực tiếp trên sơ đồ Viết lại dƣới dạng ma trận: )()()( tBrtAxtx Trong đó: ; 924 340 325 A 3 3 3 B; )( )( )( )( 3 2 1 tx tx tx tx Đáp ứng của hệ: )()()( 1 tCxtxtc 001C 159 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.5 Thành lập hệ phƣơng trình biến trạng thái từ ở dạng chính tắc Để thành lập hệ phƣơng trình biến trạng thái dạng chính tắc, ta thực hiện theo các bƣớc sau: (2.85) )()( )()()( tCxtc tBrtAxtx 1. Thành lập biến phƣơng trình trạng thái ở dạng thƣờng: 2. Thực hiện phép đổi biến trạng thái: )()( tMytx 160 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.5 Thành lập hệ phƣơng trình biến trạng thái từ ở dạng chính tắc )()( )()()( tCMytc tBrtAMytyM Thay vào phƣơng trình (2.85) )()( tMytx )()( )()()( 11 tCMytc tBrMtAMyMty )()( )()()( tyCtc trBtyAty 161 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.5 Thành lập hệ phƣơng trình biến trạng thái từ ở dạng chính tắc AMMA 1Trong đó: BMB 1 CMC Hệ phƣơng trình trạng thái (2.86) tƣơng đƣơng với hệ phƣơng trình (2.85). Để (2.86) có dạng chính tắc, phải chọn M sao cho ma trận M-1AM chỉ có đƣờng chéo khác 0. 162 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.5 Thành lập hệ phƣơng trình biến trạng thái từ ở dạng chính tắc Theo lý thuyết đại số tuyến tính, ma trận chuyển đổi M đƣợc chọn nhƣ sau: 11 3 1 2 1 1 22 3 2 2 2 1 321 1111 n n nnn n n M Trong đó I, (i = 0 n) là các trị riêng của ma trận A, tất là nghiệm của phƣơng trình: det(I –A) = 0 163 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.5 Thành lập hệ phƣơng trình biến trạng thái từ ở dạng chính tắc Ví dụ: Cho hệ thống có hàm truyền: 23 13 )( )( )( 2 ss s sR sC sG Hãy thành lập hệ phƣơng trình trạng thái chính tắc mô tả hệ thống. 164 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.5 Thành lập hệ phƣơng trình biến trạng thái từ ở dạng chính tắc Giải : Áp dụng phƣơng pháp tọa độ pha ta dễ dàng suy ra hệ phƣơng trình trạng thái mô tả hệ thống là: Trong đó: )()( )()()( tCxtc tBrtAxtx 32 10 A 1 0 B 31C 165 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.5 Thành lập hệ phƣơng trình biến trạng thái từ ở dạng chính tắc Giải : Trị riêng của ma trận A là nghiệm của phƣơng trình: 0)det( AI 0 32 10 10 01 det 0 32 1 det 166 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.5 Thành lập hệ phƣơng trình biến trạng thái từ ở dạng chính tắc Giải : 0232 2 1 2 1 Thực hiện phép đổi biến: x(t) = My(t) với ma trận M là: 21 1111 21 M 11 12 11 12 1)1()2(1 11M 167 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.5 Thành lập hệ phƣơng trình biến trạng thái từ ở dạng chính tắc Giải : Với cách biến đổi trên, ta đƣợc hệ phƣơng trình biến trạng thái có dạng: )()( )()()( tyCtc trBtyAty 168 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.5 Thành lập hệ phƣơng trình biến trạng thái từ ở dạng chính tắc Giải : Trong đó: 20 01 21 11 32 10 11 12 1AMMA 1 1 1 0 11 12 1BMB 21 11 12 31 CMC 169 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.5 Thành lập hệ phƣơng trình biến trạng thái từ ở dạng chính tắc Giải : Vậy hệ phƣơng trình biến trạng thái chính tắc mô tả hệ thống là: )(. 1 1 )( )( 20 01 )( )( 2 1 2 1 tr ty ty ty ty )( )( 21)( 2 1 ty ty tc 170 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.6 Tính hàm truyền từ hệ phƣơng trình trạng thái Cho hệ thống mô tả bởi hpt trạng thái: )()( )()()( tCxtc tBrtAxtx Biến đổi Laplace hai vế phƣơng trình trên (giả sử điều kiện đầu bằng 0), ta đƣợc: (2.89) )()( (2.88) )()()( sCXsC sBRsAXssX 171 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.6 Tính hàm truyền từ hệ phƣơng trình trạng thái Từ (2.88) suy ra: )()()( sBRsXAsI )()()( 1 sBRAsIsX )()()( 1 sBRAsICsCX Kết hợp với biểu thứ (2.88) ta đƣợc )()()( 1 sBRAsICsC (2.90) )( )( )( )( 1 BAsIC sR sC sG 172 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.6 Tính hàm truyền từ hệ phƣơng trình trạng thái Công thức (2.90) cho phép ta tính đƣợc hàm truyền khi biết hệ phƣơng trình trạng thái: Ví dụ: cho hệ thống có hệ phƣơng trình biến trạng thái là: )(. 1 0 )( )( 32 10 )( )( 2 1 2 1 tr tx tx tx tx )( )( 31)( 2 1 tx tx tc Tính hàm truyền của hệ thống? 173 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.6 Tính hàm truyền từ hệ phƣơng trình trạng thái Giải: Hàm truyền của hệ thống là: BAsICsG 1)()( 32 1 32 10 10 01 )( s s sAsI Ta có: s s sss s AsI 2 13 23 1 32 1 )( 2 1 1 174 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.6 Tính hàm truyền từ hệ phƣơng trình trạng thái Giải: Ta có: ssss s ss BAsI 1 23 1 1 0 2 13 23 1 )( 22 1 23 131 31 23 1 )( 22 1 ss s sss BAsIC 23 13 )( 2 ss s sGVậy ta có hàm truyền: 175 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.7 Nghiệm của hệ phƣơng trình trạng thái Cho hệ thống có phƣơng trình trạng thái nhƣ sau: (2.92) )()( (2.91) )()()( tCxtc tBrtAxtx Muốn tính đƣợc đáp ứng của hệ thống khi biết tin hiệu vào r(t), trƣớc tiên ta phải tính đƣợc nhiệm x(t) của phƣơng trình (2.91). 176 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.7 Nghiệm của hệ phƣơng trình trạng thái Biến đổi Laplace hai vế phƣơng trình (2.91) ta đƣợc: (2.93) )()()x(0)()( )()0()()( )()()0()( 11 sBRAsIAsIsX sBRxsXAsI sBRsAXxssX Đặt: , thay vào phƣơng trình (2.93) ta đƣợc: -1)()( AsIs (2.94) )()()0()()( sBRsxssX 177 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.7 Nghiệm của hệ phƣơng trình trạng thái Biến đổi Laplace ngƣợc hai vế biểu thức (2.94), ta đƣợc: (2.95) d)()()0()()( 0 t Brtxttx Trong đó: (2.96) ])[()]([)( 111 AsIst LL Ma trận (t) đƣợc gọi là ma trận quá độ của hệ thống. Tính (t) theo (2.96) tƣơng đối khó khăn, nhất là đối với các hệ thống bậc ba trở lên, do trƣớc tiên phải tính ma trận nghịch đảo, sau đó thực hiện phép biến đổi Laplace ngƣợc. Công thức dẫn ra dƣới đây sẽ cho việc tính toán (t) dễ dàng hơn. 178 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.7 Nghiệm của hệ phƣơng trình trạng thái Dựa vào biểu thức (2.95) ta thấy khi r(t) = 0 thì: (2.97) )0()()( xttx Mặt khác, khi r(t) = 0 phƣơng trình (2.91) trở thành: (2.98) )()( tAxtx Nhiệm của (2.98) là: (2.99) )0()( xetx At 179 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.7 Nghiệm của hệ phƣơng trình trạng thái So sánh (297) và (2.99) suy ra: (2.100) )( Atet Theo định lý Haley – Hamilton, ta có: (2.101) ][...][][)( 11 2 210 ACACACICet n n At Thay A = , là các trị riêng của ma trận A (tất là nghiệm của phƣơng trình det(I –A) = 0) vào biểu thức (2.101), ta sẽ tính đƣợc các hệ số Ci (i = 0 (n-1)). 180 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.7 Nghiệm của hệ phƣơng trình trạng thái Tóm lại: • Để tính nghiệm của hệ phƣơng trình biến trạng thái ta thực hiện các bƣớc sau đây: 1- Tính ma trận quá độ (t) theo công thức (2.96) hoặc (2.101). 2- Tính nghiệm của phƣơng trình biến trạng thái theo công thức (2.95), nếu điều kiện đầu bằng 0 thì: d)()()( 0 t Brttx 181 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.7 Nghiệm của hệ phƣơng trình trạng thái Tóm lại: • Nếu muốn tìm đáp ứng của hệ thống bằng phƣơng pháp biến trạng thái, trƣớc tiên tìm nghiệm của hệ phƣơng trình biến trạng thái, sau đó tính: )()( tCxtc 182 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.7 Nghiệm của hệ phƣơng trình trạng thái Ví dụ: Cho hệ thống có hàm truyền là: 23 )( 2 ss s sG 1- Thành lập hệ phƣơng trình biến trạng thái mô tả hệ thống trên 2- Tìm ma trận quá độ 3- Tìm đáp ứng của hệ thống khi tín hiệu vào là hàm nấc đơn vị (giả sử điều kiện đầu bằng 0). 183 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.7 Nghiệm của hệ phƣơng trình trạng thái Giải : 23)( )( 2 ss s sR sC 1- Thành lập hệ phƣơng trình biến trạng thái Theo đề bài ta có: )()()23( 2 ssRsCss )()(2)(3)( trtctctc Đặt biến trạng thái nhƣ sau: )()()( )()( 12 1 trtxtx tctx 184 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.7 Nghiệm của hệ phƣơng trình trạng thái Giải : 1- Thành lập hệ phƣơng trình biến trạng thái Hệ phƣơng trình trạng thái mô tả hệ thống là: Trong đó: 32 1010 12 aa A )()( )()()( tCxtc tBrtAxtx 3 1 2 1 B 185 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.7 Nghiệm của hệ phƣơng trình trạng thái Giải : 1- Thành lập hệ phƣơng trình biến trạng thái do 1 = b0 = 1 2 = b1 – a11 = 0 – 3*1 =3 C = [ 1 0 ] 186 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.7 Nghiệm của hệ phƣơng trình trạng thái Giải : Cách 1: 2- Tính ma trận quá độ ])[()]([)( 111 AsIst LL Ta có: s s sss s ss AsIs 2 13 )2)(1( 1 2 13 23 1 )()( 2 1 32 1 32 10 10 01 )( s s sAsI 187 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.7 Nghiệm của hệ phƣơng trình trạng thái Giải : 2- Tính ma trận quá độ )2)(1()2)(1( 2 )2)(1( 1 )2)(1( 3 )]([)( 11 ss s ss ssss s st LL )2)(1()2)(1( 2 )2)(1( 1 )2)(1( 3 11 11 ss s ss ssss s LL LL 188 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.7 Nghiệm của hệ phƣơng trình trạng thái Giải : 2- Tính ma trận quá độ )2( 2 )1( 1 )2( 2 )1( 2 )2( 1 )1( 1 )2( 1 )1( 2 )]([ 11 11 1 ssss ssss s LL LL L )2()22( )()2( )( 22 22 tttt tttt eeee eeee t 189 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.7 Nghiệm của hệ phƣơng trình trạng thái Giải : Cách 2: 2- Tính ma trận quá độ (2.102) 10 ACICeΦ(t) At Các trị riêng của A là nghiệm của phƣơng trình det(sI - A) = 0 0 32 10 10 01 det 0232 2 1 2 1 190 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.7 Nghiệm của hệ phƣơng trình trạng thái Giải : 2- Tính ma trận quá độ Thay A = i vào công thức (2.102), ta đƣợc: 210 110 2 1 CCe CCe t t 10 2 10 2CCe CCe t t tt tt eeC eeC 2 1 2 0 2 191 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.7 Nghiệm của hệ phƣơng trình trạng thái Giải : 2- Tính ma trận quá độ Thay C0 và C1 vào công thức (2.102), ta đƣợc: 32 10 )( 10 01 )2()( 22 tttt eeeet )2(22( )()2( )( 22 22 tttt tttt eeee eeee t Ta thấy ma trận quá độ tính theo hai cách đều cho kết quả giống nhau 192 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.7 Nghiệm của hệ phƣơng trình trạng thái Giải : 3- Đáp ứng của hệ thống Trƣớc tiên ta tìm nghiệm của hệ phƣơng trình biến trạng thái. Với điều kiện đầu bằng 0, nghiệm của phƣơng trình trạng thái là: d)()()( 0 t Brttx d eeee eeee t tttt tttt 3 1 )2(22( )()2( 0 )(2)()(2)( )(2)()(2)( 193 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.7 Nghiệm của hệ phƣơng trình trạng thái Giải : 3- Đáp ứng của hệ thống d ee ee tx t tt tt )4( )2( )( 0 )(2)( )(2)( t tt t tt dee dee 0 )(2)( 0 )(2)( )4( )2( 194 2.4 TÓM TẮT Chƣơng này đã trình bày hai phƣơng pháp mô tả toán học hệ thống tự động là phƣơng pháp hàm truyền đạt và phƣơng pháp không gian trạng thái. Tùy theo hệ thống và bài toán điều khiển cần giải quyết mà chúng ta chọn bài toán mô tả toán học phù hợp. Nếu bài toán là bài toán phân tích, nếu hệ thống có một ngõ vào, một ngõ ra và nếu quan hệ giữa ngõ vào và ngõ ra có thể biểu diễn bằng một phƣơng trình vi phân hệ số hằng thì có thể chọn phƣơng pháp hàm truyền đạt hay phƣơng pháp không gian trạng thái đều đƣợc. 195 2.4 PHƢƠNG PHÁP KHÔNG GIAN TRẠNG THÁI 2.4.7 Nghiệm của hệ phƣơng trình trạng thái Giải : 3- Đáp ứng của hệ thống tt tt ee ee tx tx tx 2 2 2 1 21)( )( )( tt eetx tx tx tc 21 2 1 )( )( )( 01)( Đáp ứng của hệ thống là: 196 2.4 TÓM TẮT Nếu hê ̣ thống khảo sát là hệ biến đổi theo thời gian hay hệ phi tuyến, hệ đa biến thì phƣơng pháp không gian trạng thái nên đƣợc sƣ̉ dụng. Nếu bài toán là bài toán thiết kế hệ thống điều khiển tối ƣu thì bất kể hệ thống loại gì ta phải chọn phƣơng pháp không gian trạng thái.
File đính kèm:
- bai_giang_ly_thuyet_dieu_khien_tu_dong_vo_van_dinh.pdf