Bài giảng Linh kiện điêhn tử - Chương 5: Transistor hiệu ứng trường (FET)
Tóm tắt Bài giảng Linh kiện điêhn tử - Chương 5: Transistor hiệu ứng trường (FET): ...ục tăng UDS thì điểm “thắt” sẽ dịch chuyển về phía S, khi đó điện trở của kênh tăng dần, nên ID=IDSS≈const – Tiếp tục tăng UDS thì tiếp giáp p-n bị đánh thủng, JFET không hoạt động được • Khi UGS<0 thì hiện tượng thắt kênh sẽ diễn ra sớm hơn, và IDbh nhỏ hơn N H A T R A N G U N ...háng ra lớn) N H A T R A N G U N IV E R S IT Y Phân cực cho JFET • Để JFET làm việc ở chế độ khuếch đại thì phải phân cực cho nó theo nguyên tắc tiếp giáp p-n luôn phân cực ngược • Đối với JFET kênh n thì UGS<0; JFET kênh p thì UGS>0 • JFET cũng như transistor cũng có c...p p-n, giá trị này cỡ vài chục pF, ở tần số thấp có thể bỏ qua N H A T R A N G U N IV E R S IT Y Sơ đồ tương đương của JFET ở chế độ tín hiệu nhỏ, tần số thấp Ở tần chế độ làm việc với tín hiệu nhỏ, tần số thấp có thể bỏ qua ảnh hưởng của các tụ tiếp xúc của các cực r’gs...
N H A T R A N G U N IV E R S IT Y Chương 5 Transistor hiệu ứng trường (FET) • Cấu tạo, nguyên lý hoạt động của FET (Field-Effect Transistor) • Các tham số và đặc tính của FET • Phân cực cho FET • Sơ đồ tương đương của FET ở chế độ tín hiệu nhỏ, tần số thấp N H A T R A N G U N IV E R S IT Y Transistor trường (Field-Effect Transistor) • Là loại linh kiện hoạt động dựa trên hiệu ứng trường để điều khiển độ dẫn điện trong bán dẫn đơn tinh thể • Dòng điện chỉ do một loại hạt mang điện sinh ra nên nó còn được gọi là linh kiện đơn cực (unipolar device) • Transistor trường gồm có hai loại: – Nếu cực cửa cách ly với kênh bởi tiếp giáp p-n thì đó là transistor trường cực cửa tiếp giáp JFET – Nếu cực cửa cách ly với kênh bởi lớp oxit kim loại thì đó là transistor trường cực cửa cách ly oxit kim loại (MOSFET); MOSFET lại có hai loại là MOSFET kênh đặt sẵn và MOSFET kênh cảm ứng • Ưu điểm của transistor trường là: mức độ tiêu hao năng lượng thấp, hoạt động tin cậy, ít nhiễu, trở kháng vào rất lớn, trở kháng ra rất nhỏ, N H A T R A N G U N IV E R S IT Y Transistor trường có cực cửa tiếp giáp (JFET) • Cấu tạo – Trên đế bán dẫn loại n (hoặc p) ta pha tạp hai lớp bán dẫn loại p (hoặc n) có nồng độ cao; lớp bán dẫn loại n (hoặc p) đó gọi là kênh dẫn – Hai đầu của kênh dẫn đưa ra hai chân là cực Máng D (Drain) và cực Nguồn S (Source); thường JFET có cấu trúc đối xứng, nên cực D và cực S có thể đổi lẫn cho nhau – Hai miếng bán dẫn ở hai bên được nối với nhau và được đưa ra một chân là cực cửa G (Gate) N H A T R A N G U N IV E R S IT Y Nguyên lý hoạt động JFET • Để JFET hoạt động ở chế độ khuếch đại thì phải phân cực cho nó theo nguyên tắc tiếp giáp p-n luôn phân cực ngược • Xét nguyên lý làm việc của JFET kênh n: – Để tiếp giáp p-n phân cực ngược thì UGS<0 – UDS>0 có tác dụng tạo ra dòng điện đi qua kênh – Dòng điện đi qua kênh (dòng cực máng ID) phụ thuộc vào cả UGS và UDS N H A T R A N G U N IV E R S IT Y Nguyên lý hoạt động JFET • Nếu giữ UGS ở một giá trị cố định, và xét sự phụ thuộc của dòng cực máng ID vào UDS, ta có đặc tuyến ra: ID=f(UDS)|Ugs=const N H A T R A N G U N IV E R S IT Y Nguyên lý hoạt động JFET • Khi UGS=0 – Nếu UDS=0, chưa có điện trường cuốn các electron từ S→D, nên ID=0 – Tăng dần UDS>0, tiếp giáp p-n bị phân cực ngược mạnh dần, nhưng không đồng đều: phân cực mạnh hơn ở phía D và giảm dần về phía S. Nếu chưa có sự “thắt” kênh, thì điện trở của kênh là không đổi và dòng ID tăng dần – Tiếp tục tăng UDS, đến khi hai lơp tiếp giáp p-n gặp nhau tại một điểm, đó là sự “thắt” kênh→UDS=UDSS (pinch off) – Tiếp tục tăng UDS thì điểm “thắt” sẽ dịch chuyển về phía S, khi đó điện trở của kênh tăng dần, nên ID=IDSS≈const – Tiếp tục tăng UDS thì tiếp giáp p-n bị đánh thủng, JFET không hoạt động được • Khi UGS<0 thì hiện tượng thắt kênh sẽ diễn ra sớm hơn, và IDbh nhỏ hơn N H A T R A N G U N IV E R S IT Y Nguyên lý hoạt động JFET a. Kênh chưa thắt b. Bắt đầu xảy ra hiện tượng thắt kênh c. Điểm thắt dịch chuyển về phía S N H A T R A N G U N IV E R S IT Y Nguyên lý hoạt động JFET • Họ đặc tuyến ra của JFET N H A T R A N G U N IV E R S IT Y Nguyên lý hoạt động JFET • Nếu giữ UDS ở một giá trị cố định, và xét sự phụ thuộc của dòng cực máng ID vào UGS, ta có đặc tuyến truyền đạt: ID=f(UGS)|Uds=const N H A T R A N G U N IV E R S IT Y Nguyên lý hoạt động JFET • Cho UDS=const>0 – Nếu UGS=0, lúc này tiếp giáp p-n bị phân cực ngược yếu nhất, nên độ rộng của kênh là lớn nhất, do vậy dòng ID là lớn nhất – Nếu giảm UGS<0, tiếp giáp p-n phân cực mạnh dần (vẫn phân cực không đồng đều: mạnh ở phía D, yếu ở phía S), nên độ rộng của kênh giảm dần, do vậy dòng ID cũng giảm dần – Nếu tiếp tục giảm UGS<0, thì dòng ID tiếp tục giảm, đến khi ID=0, thì UGS=Uoff (cut off) – Nếu tiếp tục giảm UGS<0 thì tiếp giáp p-n bị đánh thủng N H A T R A N G U N IV E R S IT Y Nguyên lý hoạt động JFET 2 1 off GS DSSD U U IIDòng điện qua JFET/MOSFET: N H A T R A N G U N IV E R S IT Y Các cách mắc JFET trong mạch khuếch đại • JFET tương tự như một transistor lưỡng cực, với sự tương ứng các cực là: D≡C; S≡E; G≡B, do vậy cũng có các cách mắc trong mạch khuếch đại tương ứng là S- chung, D-chung và G-chung (G-chung ít được dùng vì trở kháng vào nhỏ, trở kháng ra lớn) N H A T R A N G U N IV E R S IT Y Phân cực cho JFET • Để JFET làm việc ở chế độ khuếch đại thì phải phân cực cho nó theo nguyên tắc tiếp giáp p-n luôn phân cực ngược • Đối với JFET kênh n thì UGS<0; JFET kênh p thì UGS>0 • JFET cũng như transistor cũng có các cách phân cực như: phân cực bằng hồi tiếp điện áp, phân cực bằng điện trở phân áp, phân cực bằng dòng cố địnhTuy nhiên các phương pháp này không thực hữu hiệu khi phân cực cho JFET • Phương pháp thông dụng nhất để phân cực JFET là phương pháp tự phân cực (self-bias) N H A T R A N G U N IV E R S IT Y Phân cực cho JFET • Phân cực cho JFET bằng phương pháp tự phân cực DDDDD SDGS RIVU RIU Phương trình đường tải một chiều SDDDDDS RRIVU N H A T R A N G U N IV E R S IT Y Phân cực cho JFET • Phân cực cho JFET bằng điện trở phân áp Tính dòng điện và điện áp một chiều trên các cực của JFET? Biết UD=7V N H A T R A N G U N IV E R S IT Y Các tham số của JFET ở chế độ tín hiệu nhỏ constUgs d m DS u i g Độ hỗ dẫn: Biểu thị khả năng điều khiển dòng điện cực máng của điện áp UGS Trong datasheet của JFET thường cho độ hỗ dẫn ở UGS=0V: g0m GSoff GS mm U U gg 10 off DSS m U I g 2 0 và N H A T R A N G U N IV E R S IT Y Các tham số của JFET ở chế độ tín hiệu nhỏ constUD DS o GS i u r Trở kháng ra: Biểu thị sự ảnh hưởng của điện áp ra với dòng cực máng. Trở kháng vào: Do tiếp giáp p-n phân cực ngược, nên trở kháng vào rất lớn, khoảng 10-100MΩ, đây là ưu điểm của FET so với BJT constUG GS i DS i u r Điện dung tiếp xúc giữa các cực: Do tiếp giáp p-n phân cực ngược, nên gữa các cực có điện dung của tiếp giáp p-n, giá trị này cỡ vài chục pF, ở tần số thấp có thể bỏ qua N H A T R A N G U N IV E R S IT Y Sơ đồ tương đương của JFET ở chế độ tín hiệu nhỏ, tần số thấp Ở tần chế độ làm việc với tín hiệu nhỏ, tần số thấp có thể bỏ qua ảnh hưởng của các tụ tiếp xúc của các cực r’gs: điện trở giữa hai cực G-S r’ds: điện trở giữa hai cực D-S r’gs và r’ds rất lớn nên coi như hở mạch N H A T R A N G U N IV E R S IT Y Transistor trường có cực cửa cách ly (MOS-FET) • Cấu tạo: – Trên đế bán dẫn loại n (hoặc p), người ta pha tạp hai lớp bán dẫn loại p (hoặc n) và đưa ra hai cực D và S – Kênh dẫn nằm dưới cực cửa và nối giữa cực D và S; kênh dẫn được cách ly với cực cổng G bởi lớp oxit cách điện (thường là SiO2) – Nếu kênh dẫn hình thành sẵn trong quá trình chế tạo thì ta có loại MOSFET kênh đặt sẵn (Depletion MOSFET: DMOSFET); Nếu kênh hình thành trong quá trình làm việc thì ta có MOSFET kênh cảm ứng (Enhancement MOSFET: EMOSFET) N H A T R A N G U N IV E R S IT Y Transistor trường có cực cửa cách ly (MOS-FET) • MOSFET kênh cảm ứng N H A T R A N G U N IV E R S IT Y MOSFET MOSFET kênh đặt sẵn MOSFET kênh cảm ứng N H A T R A N G U N IV E R S IT Y Nguyên lý hoạt động MOSFET • Để MOSFET hoạt động ở chế độ khuếch đại thì phải phân cực cho nó băng cách đặt lên các cực của nó điện áp một chiều thích hợp. Khi làm việc thì đế và cực S của MOSFET được nối với nhau • Xét nguyên lý làm việc của DMOSFET kênh n: – Đặt vào kênh điện áp UDS>0 có tác dụng tạo ra dòng điện đi qua kênh ID – Nếu UGS>0, điện trường do nó gây ra có tác dụng kéo các hạt dẫn thiểu số từ đế vào kênh→chế độ giàu của DMOSFET – Nếu UGS<0, điện trường do nó gây ra có tác dụng kéo các hạt dẫn đa số từ kênh về đế→chế độ nghèo của DMOSFET – Dòng điện đi qua kênh (dòng cực máng ID) phụ thuộc vào cả UGS và UDS N H A T R A N G U N IV E R S IT Y Nguyên lý hoạt động của DMOSFET Giống JFET N H A T R A N G U N IV E R S IT Y Nguyên lý hoạt động của EMOSFET • EMOSFET chỉ hoạt động ở chế độ giàu: (UGS>0 đối với EMOSFET kênh n; và UGS<0 đối với EMOSFET kênh p) • Xét nguyên lý hoạt động của EMOSFET kênh n – Khi UGS≤0, chưa có kênh dẫn, nên dù UDS>0, vẫn không có dòng cực máng – Khi UGS>0, kênh dẫn hình thành do điện trường do UGS gây ra kéo các electron từ đế về kênh; điện áp UGS bắt đầu hình thành kênh gọi là điện áp ngưỡng UGSth – Người ta tính được dòng ID: 2GSthGSD UUKI K: là hằng số, đơn vị A/V2; thường được xác định nhờ các thông số trong datasheet của nhà sản xuất N H A T R A N G U N IV E R S IT Y Nguyên lý hoạt động của EMOSFET
File đính kèm:
- bai_giang_linh_kien_diehn_tu_chuong_5_transistor_hieu_ung_tr.pdf