Bài giảng Xử lý tin hiệu số - Chương 4: Tín hiệu và hệ thống trong miền tần số - Đinh Đức Anh Vũ
Tóm tắt Bài giảng Xử lý tin hiệu số - Chương 4: Tín hiệu và hệ thống trong miền tần số - Đinh Đức Anh Vũ: ...t/h – Khác biệt cơ bản giữa BĐ Fourier của t/h năng lượng RRTG và t/h năng lượng LTTG • Tầm tần số – T/h LTTG: -∞ → +∞ – T/h RRTG: 0 → 2π hoặc –π → π [X(ω) tuần hoàn chu kỳ 2π] • Cách tính: dùng tích phân thay vì dùng tổng • Hệ số Fourier T/h RRTG và không tuần hoàn (1) ∑ ∞ −∞= −= n n...n) và x(–n) = –x(n), nên [x(n)cosωn] lẻ và [x(n)sinωn] chẵn • Do đó 1 0 ( ) (0) 2 ( )cos ( ) ( ) 0 1( ) ( ) cos R n I R X x x n n hàmchan X x n X nd π ω ω ω ω ω ω π ∞ = = + = = ∑ ∫ ∫ ∑ −= −= = ∞ = π ωωω π ωω ω 0 1 sin)(1)( )(sin)(2)( ...ính hàm đáp ứng tần số H(ω) – Cho zero zk và pole pk – Xác định H(ω) tại ω (điểm L) – Việc tính H(ω) tương đương việc tính H(z) tại điểm L trên vòng tròn đơn vị – Sự hiện diện của zero gần vòng tròn đơn vị khiến biên độ đáp ứng tần số tại những điểm trên vòng tròn gần điểm đó nhỏ – Ngược lạ...
* 2 1 nxnxnjxnxnx nxnxnjxnxnx đótrong nxnx nxnxjnxnxnjxnxnx o I o Ro e I e Re oe o I e I o R e RIR [ ] [ ] [ ] [ ])()()()()( )()()()()( ωωωωω oI o R e I e R o I o R e I e R jXXjXXX njxnxnjxnxnx +++= +++= T/h RRTG: Đặc tính của BĐ Fourier 2011 dce 51DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ • Tuyến tính – Ví dụ: tìm BĐ Fourier của x(n) sau. Vẽ t/h và phổ của t/h. )()()()( )()( )()( 22112211 22 11 ωω ω ω XaXanxanxa Xnx Xnx F F F +→←+⇒ →← →← 11 00 0 )( 00 0 )( )()()( 2 1 21 <<− ≥ < = < ≥ = += − a n na nx n na nx nxnxnx n n ω ω ωω ω ω j j n nj n nj ae X aaeDo aeenxX − − ∞ = − ∞ −∞= − − =⇒ <= == ∑∑ 1 1)( 1 )()()( 1 0 11 ω ω ω ωωω ω ω j j j k kj n nj n nj ae aeX aaeDo aeaeenxX − =⇒ <= === ∑∑∑ ∞ = − −∞= − ∞ −∞= − 1 )( 1 )()()()( 2 1 1 22 T/h RRTG: Đặc tính của BĐ Fourier 2011 dce 52DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ T/h RRTG: Đặc tính của BĐ Fourier 2 2 21 cos21 1)( )()()( aa aX XXX +− − = += ω ω ωωω 2011 dce 53DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ • Dịch theo thời gian – Ví dụ: tìm BĐ Fourier của t/h • Đảo theo thời gian – Ví dụ )2()(3)( 321 −= − nunx n )()()()( ωω ω XeknxXnx kjFF −→←−⇒→← )()()()( ωω −→←−⇒→← XnxXnx FF 1 1 1 11 2 32 ( ) 3.2 . ( ) ( ) 3.( ) . ( ) ( ) 3.2 . ( 3) n n n x n u n x n u n x n u n − + − + − + = − = − = − + ω ω ω ω ω ω ωω ωω ω j j F n j j jF n j Fn e eXXnxnunx e eXeXnunxnx e Xnunx − −− − − − − − − ==→←=− =⇒ − ==→←− =−= − =→←= 2 1 2 22 2 2 1 2 1 2 2 2 12 2 112 1 1 1 6)(6)()(6)2( 2 16)( 1 )()()2( 2 1)2()( 1 1)()()()( T/h RRTG: Đặc tính của BĐ Fourier 2011 dce 54DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ • Tổng chập – Chú ý: Có thể dùng BĐ Fourier thuận và BĐ Fourier ngược để tính tích chặp • Tương quan • Định lý Wiener-Khintchine )()()()(*)()( )()( )()( 2121 22 11 ωωω ω ω XXXnxnxnx Xnx Xnx F F F =→←=⇒ →← →← )()()()( )()( )()( 21 22 11 2121 ωωω ω ω −=→←⇒ →← →← XXSmr Xnx Xnx xx F xxF F )()()()()( ωωω −=→←⇒ XXSlrthucnx xx F xx T/h RRTG: Đặc tính của BĐ Fourier 2011 dce 55DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ • Dịch theo tần số • Định lý điều chế • Định lý Parseval [ ]10 0 02( ) ( ) ( ) co s ( ) ( )F Fx n X x n n X Xω ω ω ω ω ω←→ ⇒ ←→ + + − 0 0( ) ( ) ( ) ( ) j nF Fx n X e x n Xωω ω ω←→ ⇒ ←→ − ∫∑ − ∞ −∞= =⇒ →← →← π π ωωω πω ω dXXnxnx Xnx Xnx n F F )()( 2 1)()( )()( )()( * 21 * 21 22 11 T/h RRTG: Đặc tính của BĐ Fourier 2011 dce 56DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ • Nhân 2 chuỗi (định lý cửa sổ) • Đạo hàm miền tần số • Liên hợp phức ω ωω d dXjnnxXnx FF )()()()( →←⇒→← )()()()( ** ωω −→←⇒→← XnxXnx FF ∫− −=→←=⇒ →← →← π π λλωλ π ω ω ω dXXXnxnxnx Xnx Xnx F F F )()( 2 1)()()()( )()( )()( 213213 22 11 T/h RRTG: Đặc tính của BĐ Fourier 2011 dce 57DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ • H/t nghỉ LTI • Hàm đáp ứng tần số: đáp ứng tần số của t/h mũ phức và t/h sin – Đáp ứng tần số của t/h mũ phức: cho x(n) = Aejωn -∞ < n < ∞ T/h mũ phức T/h sin Hệ LTI trong miền tần số h(n) h(n): hàm đáp ứng xung đơn vị H(ω): hàm đáp ứng tần số H(ω) F Miền thời gian Miền tần số x(n) x(n) y(n) y(n) nj k kjnj k knj k eAH ekhAeAekh knxkhnhnxny ω ωωω ω)( )()( )()()(*)()( )( = == −== ∑∑ ∑ ∞ −∞= − ∞ −∞= − ∞ −∞= x(n) = Aejωn là một eigenfunction của h/t H(ω) là eigenvalue tương ứng 2011 dce 58DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI trong miền tần số • Biểu diễn H(ω) ở dạng cực • Ta có Trong đó • Do đó, nếu biết │H(ω)│và Θ(ω) trong khoảng 0 ≤ ω ≤ π thì cũng xác định được trong khoảng –π ≤ ω ≤ 0 )()()( ωωω Θ= jeHH [ ])(/)(tan22 1)()( )()( sin)(cos)()()( ωω ω ωω ωω ωωω RI HHj IR IR kkk kj eHH jHH kkhjkkhekhH − += += −== ∑∑∑ ∞ −∞= ∞ −∞= ∞ −∞= − lehàmkkhH chanhàmkkhH k I k R ∑ ∑ ∞ −∞= ∞ −∞= −= = ωω ωω sin)()( cos)()( lehàm chanhàmHHH R I H H IR )( )(1 22 tan)( )()()( ω ωω ωωω −=Θ += 2011 dce 59DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI trong miền tần số • Đáp ứng tần số của t/h sin njAenx ω=)(1 njAenx ω−=)(2 njj eeHAny ωωω )(1 )()( Θ= njj njj eeHA eeHAny ωω ωω ω ω −Θ− −−Θ = −= )( )( 2 )( )()( [ ])()(sin)( 2121 nxnxnAnx j −== ω [ ] [ ])(sin)( )()()( 2121 ωωω Θ+= −= nHA nynyny j [ ])()(cos)( 2121 nxnxnAnx +== ω [ ] [ ])(cos)( )()()( 2121 ωωω Θ+= += nHA nynyny 2011 dce 60DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI trong miền tần số • Ví dụ: cho hệ LTI nhân quả, điều kiện đầu bằng 0 T/h nhập x(n) = 3cos(πn/3). Tìm y(n) ωω je H −− = 2 11 3)( 6 3 32 1 3)( 2 13 π π π j j e e H − − = − = )cos(36)( 63 ππ −= nny Z-1 + 1/2 x(n) y(n)3 2011 dce 61DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ • Đáp ứng cho t/h tuần hoàn – Đáp ứng của t/h tuần hoàn cũng là t/h tuần hoàn chu kỳ N • Đáp ứng cho t/h không tuần hoàn Hệ LTI trong miền tần số ∑ − = = 1 0 2 2)()( N k nj N k k N k eHcny π πH(ω) h(n) H(ω) F x(n) X(ω) Y(ω) y(n) F F y(n) = x(n)*h(n) Y(ω) = X(ω)H(ω) Y(ω0) = X(ω0)H(ω0) = │H(ω0)│ejΘ(ω0)X(ω0) Thành phần tần số (ω0) khi đi qua hệ thì: - Biên độ: co/giãn │H(ω0)│ - Pha: lệch pha Θ(ω0) ∑ − = = 1 0 2 )( N k nj k N k ecnx π 2011 dce 62DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI trong miền tần số • Quan hệ giữa hàm hệ thống và hàm đáp ứng tần số ∑ ∑ = − = − + = N k k k M k k k za zb zH 1 0 1 )( ∑ ∑ = − = − + = N k kj k M k kj k ea eb H 1 0 1 )( ω ω ω ∑ ∞ −∞= − = == n nj ez enhzHH j ωωω )()()( ∏ ∏ = =− − − = N k k M k k MN pz zz zbzH 1 1 0 )( )( )( ∏ ∏ = =− − − = N k k j M k k j MNj pe ze ebH 1 1)( 0 )( )( )( ω ω ωω Hệ ổn định )()/1( *** ωHzH = )()/1( 1** −= zHzH )()(* ωω −= HH )()()()()()()( 1*2 −=−== zHzHHHHHH ωωωωω 2011 dce 63DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI trong miền tần số • Tính hàm đáp ứng tần số H(ω) – Biểu diễn dưới dạng cực – Do đó, có thể tính được H(ω) nếu biết được zero và pole của hàm hệ thống – Ý nghĩa ? =− =− Φ Θ )( )( )( )( ωω ωω ω ω k k j kk j j kk j eUpe eVze ∏ ∏ = =− − − = N k k j M k k j MNj pe ze ebH 1 1)( 0 )( )( )( ω ω ωω Φ−Θ+−+∠=∠ = ∑∑ == N k k M k k N M MNbH UUU VVVbH 11 0 21 21 0 )()()()( )()...()( )()...()()( ωωωω ωωω ωωωω 2011 dce 64DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ • Tính hàm đáp ứng tần số H(ω) – Cho zero zk và pole pk – Xác định H(ω) tại ω (điểm L) – Việc tính H(ω) tương đương việc tính H(z) tại điểm L trên vòng tròn đơn vị – Sự hiện diện của zero gần vòng tròn đơn vị khiến biên độ đáp ứng tần số tại những điểm trên vòng tròn gần điểm đó nhỏ – Ngược lại, sự hiện diện của pole gần vòng tròn đơn vị khiến biên độ đáp ứng tần số tại những điểm trên vòng tròn gần điểm đó lớn x pk C 0 A Bzk L ejω hoặc │z│= 1 Φk(ω) Θk(ω) Im(z) Re(z) Vk Uk Hệ LTI trong miền tần số CL = CA + AL AL = CL – CA CL = CB + BL BL = CL – CB pk = CA zk = CB ejω = CL )( )( )( )( ωω ωω ω ω k k j kk j j kk j eVzeBL eUpeAL Θ Φ =−= =−= 2011 dce 65DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI trong miền tần số • Ví dụ: xác định đáp ứng tần số của h/t được mô tả bằng hàm h/t – Zero tại z = 0 – Pole tại z = 0.8 8.08.01 1)( 1 − = − = − z z z zH 8.0 )( − = ω ω ω j j e eH ω ω ω ω cos6.164.1 1 8.0 )( − = − = j j e e H 8.0cos sintan)( 1 − −= − ω ωωωθ 2011 dce 66DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI trong miền tần số • Hàm tương quan vào-ra và phổ )(*)()( mrmrmr xxhhyy = )(*)()( mrmhmr xxyx = )()()()()()( 1 zSzHzHzSzSzS xxxxhhyy −== )()()( zSzHzS xxyx = )()()( 2 ωωω xxyy SHS = 2)()()()()( ωωωωω XHSHS xxyx == z=ejω Phổ mật độ năng lượng chéo Phổ mật độ năng lượng ∫∫ −− === π π π π ωωω π ωω π dSHdSrE xxyyyyy )()(2 1)( 2 1)0( 2Năng lượng tổng Nếu t/h nhập có phổ phẳng Sxx(ω) = Ex = const khi –π ≤ ω ≤ π xyx EHS )()( ωω = )( 1)( ωω yx x S E H = )(1)( mr E nh yx x =Dùng trong việc xác định h(n) của hệ lạ: tác động vào h/t t/h có phổ phẳng 2011 dce 67DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI và bộ lọc Lowpass filter Highpass filter Bandpass filter Bandstop filter All-pass filter Filter • Bộ lọc – Thiết bị dùng để xử lý tùy theo đặc tính của t/h tác động vào h/t – Ví dụ: bộ lọc không khí, bộ lọc dầu, bộ lọc tia cực tím • Hệ LTI – Y(ω) = H(ω)X(ω) – Thay đổi phổ t/h nhập tùy theo đặc trưng của đáp ứng tần số H(ω) – Hệ LTI được xem là bộ lọc tần số: H(ω) đóng vai trò hàm tác động hoặc hàm chỉnh phổ – Có tác dụng • Loại bỏ nhiễu trên t/h • Tinh chỉnh hình dạng phổ của t/h • Phân tích phổ t/h • Phát hiện t/h trong Radar, Sonar, • Phân loại bộ lọc 2011 dce 68DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI và bộ lọc ω |H(ω)| –π π–ωc ωc 1 Highpass ω |H(ω)| –π π–ωc ωc 1 Lowpass ω |H(ω)| –π π–ω0 ω0 1 Bandpass ω |H(ω)| –π π–ω0 ω0 1 Bandstop 2011 dce 69DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI và bộ lọc • Bộ lọc lý tưởng – Đặc trưng của H(ω) lý tưởng • Biên độ = hằng số A, trong vùng tần số được qua = 0, trong vùng tần số không được qua • Pha tuyến tính ( = -aω, a: hằng số) – Minh họa • T/h x(n) với các thành phần t/s trong khoảng [ω1, ω2] • Hàm đáp ứng tần số • Phổ t/h tại ngõ xuất • T/h ngõ xuất y(n) = Cx(n-n0) • x(n) khi qua bộ lọc lý tưởng – bị delay: τg(ω) = -dΘ(ω)/dω = n0 (tất cả các thành phần t/s đều bị trễ như nhau) – bị co giãn biên độ – Trong thực tế không hiện thực được tình trạng lý tưởng, mà chỉ là xấp xỉ của nó << = − otherwise Ce H nj 0 )( 21 0 ωωω ω ω )()()()()( 210 ωωωωωωω ω <<== − XCeXHY nj 2011 dce 70DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI và bộ lọc • Thiết kế bộ lọc bằng sơ đồ zero-pole – Bộ lọc số đơn giản nhưng quan trọng – Nguyên lý: đặt các pole gần các điểm trên vòng tròn đơn vị tương ứng với các tần số cần nhấn mạnh (có góc pha bằng tần số được cho qua bộ lọc) và đặt các zero gần các điểm tương ứng với các tần số không muốn – Ràng buộc • Pole bên trong vòng tròn đơn vị (để hệ ổn định). Zero có thể nằm bất kỳ ở đâu trên mpz • Các zero/pole phức phải theo từng cặp liên hợp (để hệ số của bộ lọc là số thực) • Chọn b0 thích hợp để chuẩn hoá đáp ứng tại tần số được cho qua bộ lọc (để │H(ω0)│ = 1, ω0 là tần số trong bandpass của bộ lọc) ∏ ∏ ∑ ∑ = − = − = − = − − − = + = N k k M k k N k k k M k k k zp zz b za zb zH 1 1 1 1 0 1 0 )1( )1( 1 )( G ≡ b0: độ lợi 2011 dce 71DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI và bộ lọc • Bộ lọc thông thấp (lowpass) – Đặt pole gần các điểm trên vòng tròn đơn vị có tần số thấp (ω = 0) – Đặt zero gần hoặc tại các điểm trên vòng tròn đơn vị có tần số cao (ω = π) • Bộ lọc thông cao (highpass) – Tương tự như bộ lọc thông thấp, bằng cách lấy đối xứng các zero/pole qua trục ảo của mpz – Trong biểu thức hàm h/t, thay z bởi –z 2011 dce 72DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI và bộ lọc • Ví dụ 1: bộ lọc thông thấp (lowpass) một pole – Hàm hệ thống – Độ lợi G được chọn (1–a) để biên độ H(z) bằng đơn vị khi ω = 0 – Việc thêm zero = –1 sẽ làm suy giảm đáp ứng của bộ lọc ở tần số cao – Do đó – │H2(ω)│giảm bằng 0 khi ω = π 11 1 1)( −− − = az azH 1 1 2 1 1 2 1)( − − − +− = az zazH a = 0.9 2011 dce 73DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI và bộ lọc • Bộ lọc thông cao (highpass) – Có thể đạt được từ bộ lọc lowpass bằng cách thay z bởi –z 1 1 1 1 2 1)( − − − +− = az zazHlp 1 1 1 1 2 1)( − − + −− = az zazHhp z = –z a = 0.9 2011 dce 74DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI và bộ lọc • Ví dụ 2: thiết kế bộ lọc lowpass, thoả: – Một điểm pole: p – Một zero tại: 0 – Đáp ứng năng lượng tại tần số đỉnh cho qua (ω=0) bằng 1 – Đáp ứng năng lượng tại tần số ω=π/2 là 0.5 11 1)( −− = − = pz G pz zGzH pe eGH j j − = ω ω ω)( 2 2 2 cos21 1 )1)(1( 1)( pp G pepe GS jjxx +− = −− = − ω ω ωω = + = = +− = 2 1 1 )( 1 21 )0( 2 2 2 2 2 p GS pp GS xx xx π −±= −= )32(2 32 G p 32+=p(bỏ qua vì hệ không ổn định) z=ejω 2011 dce 75DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI và bộ lọc 2)32(cos)32(21 )32(2)( −+−− − = ω ωxxS 11 )( −− = pz Gzh z–1p x(n) y(n)G + 2011 dce 76DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ • Ví dụ 3: xác định các tham số của bộ lọc trong hình 1 để thoả yêu cầu phổ mật độ năng lượng trong hình 2 2a x(n) y(n)G –a2 + + z–1 + z–1 Hệ LTI và bộ lọc (Hình 1) (Hình 2) 2011 dce 77DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI và bộ lọc • Bộ lọc bandpass – Nguyên tắc: được thực hiện tương tự lowpass và highpass – Có một hoặc nhiều cặp pole liên hợp phức gần vòng tròn đơn vị, trong vùng lân cận dải tần số cho phép – Ví dụ 4: thiết kế bộ lọc bandpass thoả: • Tâm của passband = π/2. Đáp ứng tần số tại tâm đó = 1 • Đáp ứng tần số = 0 tại các tần số: 0, π • Đáp ứng biên độ = tại các tần số: 4π/9 z-1 z-1 z-1 B D E x(n) y(n)A z-1 C + + + + 2 1 22 2 1 ))(( )1)(1()( rz zG jrzjrz zzGzH + − = +− +− = ±= = ⇒ = = 7.0 15.0 )( 1)( 2 1 9 4 2 r G H H π π 2 2 7.01 115.0)( − − + − = z zzH 12,1 2,1 2 ±= = ± zZero repPole j π 2011 dce 78DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI và bộ lọc 2 2 7.01 115.0)( − − + − = z zzH 2011 dce 79DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI và bộ lọc • Biến đổi đơn giản từ bộ lọc lowpass sang bộ lọc highpass – Tạo bộ lọc highpass bằng cách dịch Hlp(ω) một đoạn π (nghĩa là thay thế ω bởi ω – π Hhp(ω) = Hlp(ω – π) – Trong miền thời gian hhp(n) = (ejπ)nhlp(n) = (-1)nhlp(n) ∑∑ == −+−−= M k k N k k knxbknyany 01 )()()( ∑∑ == −−+−−−= M k k k N k k k knxbknyany 01 )()1()()1()( ∑ ∑ = − = − + = N k kj k M k kj k lp ea eb H 1 0 1 )( ω ω ω ∑ ∑ = − = − −+ − = N k kj k k M k kj k k hp ea eb H 1 0 )1(1 )1( )( ω ω ω 2011 dce 80DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI và bộ lọc • Bộ cộng hưởng số – Bộ lọc bandpass 2 pole liên hợp phức gần vòng tròn đơn vị – Vị trí góc của pole xác định tần số cộng hưỏng – Chọn pole liên hợp phức p1,2 = re±jω0 (0 < r < 1) – Có thể chọn thêm tối đa 2 zero • Hoặc zero tại gốc tọa độ • Hoặc zero tại ±1 • Cho phép loại bỏ các đáp ứng của bộ lọc tại ω = 0 hoặc ω = π – Giả sử zero được chọn tại gốc • Do |H(ω)| có đỉnh tại (hoặc gần) ω = ω0, nên )1)(1( )( 11 0 00 −−− −− = zrezre bzH jj ωω 1 )1)(1( )( 0000 0 0 =−− = −−− ωωωωω jjjj ereere bH 0 2 0 2cos21)1( ωrrrb −+−= 2011 dce 81DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI và bộ lọc • Phổ biên độ và phổ pha trong trường hợp ω0 = 1 • SV khảo sát trường hợp zero được chọn tại ±1 và so sánh phổ biên độ và phổ pha với trường hợp zero tại 0 ω0 –ω0 r r p1 = rej p2 = re–j 2011 dce 82DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI và bộ lọc • Bộ lọc khe V (notch) – Chứa một hoặc nhiều khe sâu, có đáp ứng tần số bằng 0 – Đặt một cặp zero liên hợp phức trên vòng tròn đơn vị, tại góc ω0, tức – Hàm h/t – Nhược điểm • Khe có độ rộng khá lớn • Thành phần tần số xung quanh ω0 bị suy hao • P/p khắc phục: ad-hoc (nhiều p/p khác được trình bày ở chương 8) 0 2,1 ωjez ±= )cos21( )1)(1()( 21 00 11 0 00 −− −−− +−= −−= zzb zezebzH jj ω ωω ω0 = π/4 2011 dce 83DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI và bộ lọc • P/p khắc phục bộ lọc notch – Đặt cặp pole liên hợp phức tại ω0 để cộng hưởng trong vùng lân cận ω0 – Hàm h/t – Nhược điểm: • Ngoài việc giảm băng thông của khe, pole cũng tạo ra các lăn tăn (ripple) trong bandpass của bộ lọc (do việc cộng hưởng) • Khắc phục ripple bằng cách thêm zero và/hoặc pole → thử và sai 0 2,1 ωjrep ±= 221 0 21 0 0 cos21 cos21)( −− −− +− +− = zrzr zzbzH ω ω ω0 = π/4 2011 dce 84DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI và bộ lọc • Bộ lọc răng lược (comb) – Là bộ lọc notch với các khe xuất hiện tuần hoàn – Hàm h/t – Thay z bằng zL (L>0) – Đáp ứng tần số HL(ω) chính là việc lặp bậc L của đáp ứng tần số H(ω) trong khoảng [0, 2π] • Nếu H(ω) có một phổ không tại tần số ω0 nào đó, HL(ω) sẽ có các phổ không răng lược tại ωk = ω0+2πk/L (k=0, 1, 2, , L-1) ∑ = −= M k kzkhzH 0 )()( ∑ = −= M k jkekhH 0 )()( ωω ∑ = −= M k kL L zkhzH 0 )()( )()()( 0 ωω ω LHekhH M k jkL L ==∑ = −z=ejω z=ejω H4(ω) ω ππ/2 3π/2 2π H(ω) 2π ω -2π 2011 dce 85DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ M=10 & L=3M=10 Hệ LTI và bộ lọc • Ví dụ: bộ lọc trung bình ∑ = − + = M k knx M ny 0 )( 1 1)( 1 )1( 0 1 1 1 1 1 1)( − +− = − − − + = + = ∑ z z M z M zH MM k k 2 2 12/ sin )(sin 1 )( ω ω ω ω +− + = MMj M eH Mkez Mkjk ,...,3,2,1 )1/(2 == +π )1/(2 += Mkk πω L ML L z z M zH − +− − − + = 1 1 1 1)( )1( 2 2 12/ sin )(sin 1 )( ω ω ω ω L MLMj L L M eH +− + = z-1 z-1 z-1 z-1z-1z-1 z-1 z-1 z-1 + ++ h(0) x(n) h(1) h(2) h(3) y(n) L=3 & M=3 z=ejω 2011 dce 86DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI và bộ lọc • Bộ lọc Allpass – |H(ω)| = 1 (0 ≤ ω ≤ π) – Loại đơn giản nhất: H(z) = z–k – Loại khác • Nếu z0 là pole của H(z), thì 1/z0 là zero của H(z) realaa za za zH kN k k k N k kN k ,1)( 0 0 0 ≡= ∑ ∑ = − = +− 1)( 0 0 ≡=∑ = − azazA N k k k )( )()( 1 zA zAzzH N − −= 0 a 1 a-1 0 (r–1,–ω0) (r–1,ω0) (r,–ω0) (r,ω0) –ω0 ω0 2011 dce 87DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI và bộ lọc 1 1 1 1 )( − − + + = az zazH 221 0 21 0 2 2 cos21 cos2)( −− −− +− ++ = zrzr zzrrzH ω ω θ1(ω) θ2(ω) a = 0.6 r = 0.9 ω0 = π/4 2011 dce 88DSP – Tín hiệu và hệ thống trong miền tần số ©2011, Đinh Đức Anh Vũ Hệ LTI và bộ lọc • Bộ dao động sin số – Bộ cộng hưởng 2 pole, trong đó các pole nằm trên vòng tròn đơn vị – Pole và đáp ứng xung đơn vị – Nếu pole nằm trên vòng tròn đơn vị: r = 1 và b0 = Asinω0 = −= ++ = −− 2 2 01 2 2 1 1 0 cos2 1 )( ra ra zaza bzH ω 0 2,1 ωjrep ±= )()1sin( sin )( 0 0 0 nunrbnh n ω ω += )()1sin()( 0 nunAnh ω+= + + z-1 z-1 x(n)=(Asinω0)δ(n) –a2 –a1 y(n)=Asin(n+1)ω0 a1= –2cosω0 a2= 1 y(n) = –a1y(n–1) – a2y(n–2) + b0δ(n)
File đính kèm:
- bai_giang_xu_ly_tin_hieu_so_chuong_4_tin_hieu_va_he_thong_tr.pdf