Giáo trình Sinh lý động vật thủy sản - Chương III: Sinh lý hô hấp và bóng bơi
Tóm tắt Giáo trình Sinh lý động vật thủy sản - Chương III: Sinh lý hô hấp và bóng bơi: ...) và ngược lại. b. Sự vận chuyển khí CO2 . Sự chuyên chở CO2 Trong máu chỉ có 2,7% CO2 ở dạng hòa tan còn tuyệt đại bộ phận CO2 đều ở dạng kết hợp. Trong dạng kết hợp này có đến 80% tồn tại dưới dạng muối bicarbonate, còn 20% ở dạng kết hợp trực tiếp với hemoglobin. + Sự kết hợp và p... thật sự: R = Vw * Sw (Tw in – Tw out) hay phương trình tương đương: R = Vb * Sb (Tb out – Tb in) (Vw và Vb là thể tích dòng nước và máu trong một đơn vị thời gian, Sw và Sb là hệ số hòa tan hay hấp thu oxygen của hai dung môi khi khí được chuyển từ nước vào máu, Tw và Tb là áp lực c... tiêu hao oxygen khi vận động tích cực), cá chỉ có thể thỏa mãn nhu cầu oxygen khi thể tích thông khí tăng 5 lần (MÐSD = 50%) ứng với lượng oxygen tương đối có ích là gần bằng 3. 3. Các Yếu Tố Ảnh Hưởng đến Hô Hấp của Cá 3.1 Nhiệt độ H.9 Ðường cong lý thuyết biểu thị ảnh hưởng của sự giảm ...
xúc tác bởi enzyme carbonic anhydrase (CA). CO2 + H2O C.A H2CO3 (ở hồng cầu) Acid carbonic lại nhanh chóng phân ly cho ion H+ và HCO3- H2CO3 H+ + HCO3- Máu một mặt lấy CO2 từ trong mô bào tạo ra acid carbonic, mặt khác do ở mô bào phân áp O2 giảm, nồng độ H+ và CO2 tăng lên nên oxyhemoglobin lại phản ứng cho ra Hb hoàn nguyên và giải phóng oxygen. Oxyhemoglobin và Hb hoàn nguyên đều là những phân tử acid, trong hồng cầu nó chủ yếu kết hợp với ion kiềm (phần lớn là K+). Hb hoàn nguyên là acid yếu hơn acid carbonic vì thế acid carbonic cướp gốc kiềm K+ của Hb hoàn nguyên sinh ra muối bicarbonate. KHbO2 O2 + KHb KHb K+ + Hb- Hb- + H+ HHb K+ + HCO3- KHCO3 (hồng cầu) Do ở mô bào CO2 không ngừng đi vào máu vì thế nồng độ HCO-3 trong hồng cầu không ngừng tăng lên vượt quá nồng độ của nó trong huyết tương cho nên một số HCO3- SLĐVTS NVTư 28 sẽ thấm qua màng hồng cầu đi ra huyết tương làm cho ion âm trong huyết tương tăng lên một cách tương đối. Ðể cân bằng ion âm, ion Cl- từ huyết tương đi vào hồng cầu. H+ + Cl- HCl Quá trình Cl- từ huyết tương đi vào hồng cầu gọi là “sự dịch chuyển ion Clo”. Sự cân bằng này theo hiệu ứng Gibbs–Donnan. Trong khi đó, HCO3- ra huyết tương kết hợp với Na+ tạo thành muối bicarbonat. HCO3- + Na+ NaHCO3 (huyết tương) Qua các phản ứng xảy ra ở tĩnh mạch, đại bộ phận CO2 được biến thành muối bicarbonate (KHCO3 trong tế bào hồng cầu và NaHCO3 trong huyết tương). Khi đến mang, do phân áp CO2 giảm nên H2CO3 phản ứng thành CO2 và nước. H2CO3 H2O + CO2 (ở mang) Lúc này HHb sẽ kết hợp với O2 thành HHbO2 HHb + O2 HHbO2 HbO2- + H+ Oxyhemoglobin (HHbO2) là một acid mạnh hơn acid carbonic nên cướp gốc kiềm K+ của muối bicarbonate potassium (trong hồng cầu) tạo thành oxyhemoglobin potassium và giải phóng HCO3-. HbO2- + KHCO3 KHbO2 + HCO3- H+ + HCO3- H2CO3 H2O + CO2 (thải ra ở mang) Do phản ứng trên nên HCO3- trong hồng cầu giảm vì vậy HCO3- trong huyết tương được chuyển vào hồng cầu và ngược lại, Cl- lại từ hồng cầu đi ra huyết tương. Trong khi đó NaHCO3 trong huyết tương khi đến mang lại tách ra thành Na+ và HCO3-, HCO3- trở lại hồng cầu và kết hợp với H+. NaHCO3 Na+ + HCO3- HCO3- + H+ H2CO3 H2O + CO2 (thải ra ở mang) + Sự kết hợp và vận chuyển khí CO2 trực tiếp CO2 đi vào hồng cầu một phần nhỏ kết hợp trực tiếp với gốc amin trong phân tử Hb để tạo thành carbamino hemoglobin. mô bào Hb-NH2 + CO2 Hb-NHCOOH (carbamino Hb) mang C.A C.A SLĐVTS NVTư 29 Carbamino Hb không bền vững, nó phản ứng theo chiều thuận trong điều kiện phân áp CO2 tăng như ở mô bào và phản ứng theo chiều nghịch khi CO2 giảm như ở mang, và giải phóng CO2 ra ngoài. . Enzyme carbonic anhydrase Khí CO2 hòa tan trong nước và trong máu dễ hơn nhiều so với O2 (khoảng 25 lần) nhưng nếu chú ý đến thể tích máu đi qua mô và lượng khí CO2 tạo thành (cần thải ra) thì thậm chí với độ hòa tan lớn như vậy của CO2 là cũng không đủ để đáp ứng nhu cầu thải CO2 của cơ thể. Vì thế cần phải có một cơ chế đặc biệt để làm tăng khả năng của máu trong việc liên kết CO2. Vấn đề thứ 2 trong vận chuyển CO2 là máu trong các mô bào thì liên kết CO2 và ở mang thì thải ra CO2. Nếu như trong sự vận chuyển O2 có nhiều thuận lợi để tiếp nhận và thải O2 vì ở mang do tác dụng của dòng chảy đối lưu nên máu luôn luôn tiếp xúc với nước có nồng độ O2 cao hơn nhiều so với ở các mô bào. Trong khi sự chênh lệch áp suất riêng phần CO2 ở mô bào và mang chỉ khoảng 6 mmHg, có nghĩa là sự khác biệt về áp suất khí tương đối không lớn. Cuối cùng vấn đề thứ 3 nảy ra từ việc giải đáp vấn đề thứ nhất. Vấn đề là ở chỗ máu có khả năng vận chuyển một lượng CO2 lớn như thế là dưới dạng bicarbonat, nghĩa là CO2 cần liên kết với nước trong máu tĩnh mạch. Bicarbonat được tạo ra bằng con đường như vậy khi tiếp xúc với oxygen trong mang lại bị phân ly thành CO2 và nước, đó là phản ứng thuận nghịch. CO2 + H2O HCO3- + H+ Nhưng ở nhiệt độ của cơ thể, tốc độ của nó không đủ để đáp ứng yêu cầu thải khí CO2. Vấn đề này được giải quyết nhờ trong hồng cầu có các enzyme xúc tác cho các phản ứng trên; quan trọng nhất là enzyme carbonic anhydrase (CA). Enzyme carbonic anhydrase được phân bố rộng rãi trong giới động vật, nó thúc đẩy sự hydrat hóa CO2 hô hấp trong tế bào máu động vật trên cạn và các thủy động vật, nó cũng quan trọng ở các mô khác, nơi mà sự vận chuyển CO2 và sự thành lập bicarbonat có các chức năng khác hơn hô hấp, như trong sự acid hóa nước tiểu ở thận động vật xương sống và sự tiết acid dịch vị. Enzyme carbonic anhydrase chỉ có trong hồng cầu nên phản ứng kết hợp và phân ly CO2 với nước chỉ tiến hành nhanh chóng trong hồng cầu. Khi hồng cầu vỡ ra thì chức năng này của CA bị mất đi. SLĐVTS NVTư 30 c. Sự trao đổi khí ở mang và mô Sự trao đổi khí ở mang và mô được tóm tắt ở sơ đồ sau. d. Sự hiệu quả của hệ thống trao đổi khí Quá trình trao đổi khí giữa máu và nước là một quá trình phức tạp. Ðể khảo sát “sự hiệu quả” (effectiness) của một hệ thống trao đổi khí là mang, người ta dùng những khái niệm: Cường độ trao đổi khí (ví dụ oxygen) thật sự: R = Vw * Sw (Tw in – Tw out) hay phương trình tương đương: R = Vb * Sb (Tb out – Tb in) (Vw và Vb là thể tích dòng nước và máu trong một đơn vị thời gian, Sw và Sb là hệ số hòa tan hay hấp thu oxygen của hai dung môi khi khí được chuyển từ nước vào máu, Tw và Tb là áp lực của khí trong hai dung môi khi chúng đi vào và rời khỏi bề mặt hô hấp). Cường độ trao đổi khí thật sự này có thể so sánh với cường độ vận chuyển oxygen cực đại lý thuyết (Rmax). Cường độ này thu được từ một máy trao đổi ngược dòng với bề mặt vận chuyển oxygen là vô hạn. Rmax = Vb * Sb (Tw in – Tb in) Trong trường hợp này oxygen được vận chuyển từ nước vào máu vì thế áp lực oxygen trong nước đi ra tương đương với áp lực trong máu đi đến. H.7 Quá trình trao đổi khí xảy ra ở mang và mô SLĐVTS NVTư 31 Những công thức dùng để tính toán sự hiệu quả của hệ thống Cường độ vận chuyển khí thật sự (R) Sự hiệu quả = Cường độ vận chuyển khí cực đại lý thuyết (Rmax) * 100 Sự hiệu quả tùy thuộc 3 yếu tố quan trọng: (i) Tỉ lệ dung lượng giữa 2 dung môi trao đổi. Ðây là Vw * Sw Cw Vb * Sb = Cb mặc dù những tính toán này thừa nhận rằng: Vw*Sw < Vb*Sb (ii) Số lượng những đơn vị tải: là những đơn vị qui ước, phụ thuộc tỉ số giữa dung lượng trao đổi oxygen của dòng nước đi vào và dòng máu đến mang. Dung lượng oxygen trao đổi của mang tùy thuộc diện tích mang và hệ số trung bình, biểu thị những khoảng cách và những đặc tính dẫn truyền oxygen trong 2 dung môi ngang qua thượng bì mang. Ví dụ: khi diện tích mang lớn và khoảng cách trung bình giữa nước và máu nhỏ thì số lượng những đơn vị tải nhiều. (iii) Sự thích hợp của dòng chảy giữa 2 dung môi trao đổi: Sự liên hệ giữa những yếu tố này và “sự hiệu quả” được trình bày ở hình bên dưới. Kết quả cho thấy rằng khi dung lượng oxygen của nước nhỏ hơn nhiều lần so với dung lượng oxygen của máu. Ví dụ: khi tỉ lệ dung lượng (Cw/Cb) gần bằng 0, sự hiệu quả của vận chuyển oxygen từ nước vào máu có thể là 100% và không tùy thuộc dòng chảy đối lưu hay dòng chảy song song. Tuy nhiên, sự hiệu quả sẽ khác đi khi tỉ lệ dung lượng tiến tới một trị số khác và khi chúng tương đương thì việc tiến hành một dòng chảy đối lưu thì tốt hơn nhiều so với sự tiến hành một dòng chảy song song, mà không thể đạt một hiệu quả lớn hơn 50% ở tỉ lệ dung lượng = 1. Trong tất cả các trường hợp sự hiệu quả được gia tăng khi số lượng những đơn vị tải gia tăng. Ví dụ: sự hiệu quả sẽ tốt hơn trong một hệ thống có diện tích mang tổng cộng lớn hơn, sự tiếp xúc gần gũi giữa nước và máu, tốc độ dòng chảy thấp. Tuy nhiên chú ý rằng tỉ lệ gia tăng của sự hiệu quả giảm xuống ở những số lượng cao hơn của những đơn vị tải và không thể có lợi hơn để gia tăng diện tích mang lớn hơn những giới hạn nào đó. SLĐVTS NVTư 32 e. Mức độ sử dụng oxygen Mức độ sử dụng (MÐSD) oxygen là tỉ lệ (phần trăm) giữa hàm lượng oxygen được sử dụng khi đi qua mang và hàm lượng oxygen có trong nước khi đi vào mang. Mức độ sử dụng oxygen thay đổi theo thể tích nước được thông khí. Tổng quát khi thể tích nước thông khí gia tăng, MÐSD oxygen giảm xuống. Có hai lý do để giải thích hiện tượng này. Một là, một thể tích nước lớn ngang qua thượng bì mang sẽ làm giảm thời gian trong đó trạng thái cân bằng có thể được thiết lập giữa nước và máu, điều này sẽ dẫn tới một sự giảm sử dụng oxygen trong dòng nước hút vào. Hai là, ở những thể tích thông khí cao, không phải tất cả nước đi vào trong tiếp xúc với tơ mang (gill lamella) và điều này dẫn đến kết quả làm giảm sử dụng oxygen. H.8 Sự liên hệ giữa sự hiệu quả và số lượng của những đơn vị tải ở các tỉ lệ dung lượng khác nhau. (a) dòng chảy giữa máu và nước ngược chiều nhau và (b) dòng chảy giữa máu và nước song song (theo Kays and London, 1958). SLĐVTS NVTư 33 Sự liên hệ giữa máu và nước được làm phức tạp hơn nữa bởi sự khác nhau về khả năng vận chuyển oxygen của 2 dung môi. Phần lớn máu cá có dung lượng oxygen đạt tới 10 vol% trong khi nước được bão hòa oxygen hoàn toàn ở 10 – 20oC, thường là 0,6-0,9 vol%. Ðiều này cho thấy ở cá, một MÐSD oxygen 80% là có đủ oxygen để bão hòa 1 thể tích máu mà chỉ cần 1/15 thể tích nước được thông khí. Những sự đo lường % bão hòa của máu cá chỉ rằng sau khi đi ngang qua mang thường ít nhất 90% Hb được bão hòa oxygen. Những giá trị kém hơn sự bão hòa oxygen của máu cá hướng tâm được tìm thấy hầu như bằng 0 ở cá trout, nhưng có thể lớn hơn nhiều ở các loài cá khác. Ví dụ: cá chép 32%, catfish 62%, sucker 31% (Ferguson and Black, 1941); từ đó cho thấy MÐSD oxygen của các loài cá khác nhau thì rất khác nhau và mức độ cực đại của việc sử dụng oxygen được Van Dam (1938) đề nghị là 80% ở khoảng 30 mmHg O2 của nước. Với những MÐSD oxygen khác nhau ứng với những thể tích nước thông khí khác nhau, cá sẽ chọn thể tích thông khí nào là có lợi nhất. Van Dam (1938) khảo sát sự liên hệ giữa thể tích thông khí và lượng oxygen tương đối có ích đối với một con cá đã cho các giá trị về MÐSD oxygen. Một sự gia tăng 2 lần của sự thông khí sẽ làm hạ thấp sự MÐSD oxygen từ bình thường là 80% xuống 75%, một sự gia tăng thông khí 5 lần làm MÐSD oxygen giảm xuống 50%, và một giả thuyết gia tăng thông khí 10 lần sẽ giảm MÐSD oxygen xuống 20%, có lẽ là một giá trị cao. Như vậy, một con cá khi ở trạng thái nghỉ (ứng với tiêu hao oxygen nghỉ), thể tích thông khí là 1 ứng với lượng oxygen tương đối có ích là 1 thì đã thỏa mãn nhu cầu oxygen. Khi thể tích thông khí gia tăng (MÐSD oxygen giảm xuống) thì lượng oxygen tương đối có ích gia tăng và đạt tới cực đại gần bằng 3 ứng với thể tích thông khí tăng 5 lần (MÐSD = 50%), và khi thể tích thông khí tăng đến 10 (MÐSD = 20%) ứng với lượng oxygen tương đối có ích là 2,5, lúc này cá chỉ có thể vừa thỏa mãn nhu cầu oxygen. Mặc khác, khi ở trạng thái tăng cường vận động (ứng với tiêu hao oxygen khi vận động tích cực), cá chỉ có thể thỏa mãn nhu cầu oxygen khi thể tích thông khí tăng 5 lần (MÐSD = 50%) ứng với lượng oxygen tương đối có ích là gần bằng 3. 3. Các Yếu Tố Ảnh Hưởng đến Hô Hấp của Cá 3.1 Nhiệt độ H.9 Ðường cong lý thuyết biểu thị ảnh hưởng của sự giảm sự sử dụng ở những thể tích thông khí cao hơn và giá trị oxygen đối với 1 con cá ở những thể tích thông khí khác nhau (thông khí nghỉ = 1) theo Van Dam (1938) SLĐVTS NVTư 34 Khi nhiệt độ nước tăng cao sẽ làm gia tăng cường trao đổi chất của cơ thể do đó gia tăng nhu cầu oxygen đồng thời giảm khả năng liên kết oxygen của Hb. Mặt khác, nhiệt độ gia tăng làm giảm hàm lượng oxygen trong nước. Do nhu cầu oxygen tăng cao và khả năng bão hòa oxygen của Hb giảm, cá phản ứng bằng cách tăng cường đưa nước qua mang bằng cách tăng TSHH, gia tăng vận tốc máu đến mang và huy động hồng cầu từ các kho dự trữ. Tuy nhiên, ở nhiệt độ cao gần ngưỡng chết nóng của cá, do sự suy nhược cơ thể, TSHH của cá thường giảm thấp. 3.2 Oxygen và carbonic Ðáp ứng của các loài cá đối với những thay đổi hàm lượng O2 và CO2 của nước khác nhau đáng kể. Tổng quát, cá xương đáp ứng với cả hai sự thặng dư CO2 và thiếu O2 bởi một sự gia tăng thể tích nước được bơm qua mang. 3.3 Sự gia tăng hoạt động Lúc cơ thể vận động, cường độ trao đổi chất và quá trình ôxi hóa tăng mạnh, lượng O2 cần thiết cho cơ thể và lượng CO2 cơ thể cần thải ra đều tăng lên. Cá : trao đổi chất vận động = 4 lần trao đổi chất cơ sở Người : trao đổi chất vận động = 20 lần trao đổi chất cơ sở Côn trùng: trao đổi chất vận động = 100 lần trao đổi chất cơ sở Lúc này hô hấp tăng nhanh và sâu để tăng cường đưa nước qua mang; đồng thời lượng máu đẩy ra trong mỗi lần tim đập cũng tăng lên nên lượng máu và tốc độ máu đến mang cũng tăng lên. 3.4 Sự thay đổi độ pH pH biến đổi về phía acid hay kiềm làm tăng quá trình tiết chất nhầy. Chất nhầy bám trên bề mặt mang sẽ làm ngăn cản quá trình trao đổi khí giữa máu và nước. Ở pH quá thấp, mang cá bị tổn thương và cá không còn có khả năng hô hấp. 3.5 Ảnh hưởng của các chất độc hóa học khác - Khi nồng độ ammonia (NH3) trong nước tăng sẽ làm ngăn cản quá trình tiết ammonia qua mang, dẫn đến sự gia tăng ammonia trong máu và mô, gia tăng pH máu và ảnh hưởng bất lợi đến các phản ứng sinh hóa có sự xúc tác của enzyme. Nồng độ ammonia cao trong nước cũng làm gia tăng tiêu hao oxygen, tổn thương mang và giảm khả năng vận chuyển oxygen của máu. - Nitrite (NO2) được hấp thu bởi cá sẽ phản ứng với hemoglobin cho ra Methemoglobin (Met-Hb), làm mất khả năng vận chuyển oxygen của máu. Cá bị chết ngạt do ‘bệnh máu nâu’. - Hydro sulfide (H2S) có thể làm giảm khả năng liên kết oxygen của máu (tình trạng hypoxia) làm cá bị chết ngạt. SLĐVTS NVTư 35 4. Cơ Quan Hô Hấp Phụ Cơ quan hô hấp chủ yếu của các loài cá là mang, nhưng do môi trường sống thường xuyên biến động về thành phần khí, nhất là oxygen, nên ở một số loài cá, sự hô hấp bằng mang không đủ để thỏa mãn nhu cầu oxygen của cơ thể nên chúng phát triển cơ quan hô hấp khác ngoài mang được gọi là cơ quan hô hấp phụ với nhiều hình thức như hô hấp bằng ruột, da, cơ quan trên mang và phổi. Các cơ quan hô hấp phụ có nhiều dạng khác nhau, nhưng có cùng một đặc điểm chung là có vi ti huyết quản phân bố dày đặc và có thể hấp thu oxygen trực tiếp từ khí trời. Cá hô hấp bằng mang, lấy oxygen hòa tan trong nước, nên các yếu tố môi trường tác động đến quá trình hô hấp của cá mạnh mẽ nhưng ít ảnh hưởng đến quá trình trao đổi khí bằng cơ quan hô hấp phụ. Ở đây cần phân biệt hoạt động sử dụng cơ quan hô hấp phụ với hiện tượng ‘nổi đầu’ ở những cá không có cơ quan hô hấp phụ. Khi oxygen trong nước bị giảm thấp thì cá không có cơ quan hô hấp phụ thường nổi lên mặt nước vì ở tầng nước mặt thường bão hòa oxygen. Ở một số loài cá, cơ quan hô hấp phụ được sử dụng khi nồng độ oxygen trong nước quá thấp hay nồng độ CO2 quá cao nên có người cho rằng hiện tượng ‘thở’ bằng cơ quan hô hấp phụ ở cá là “hô hấp cưỡng bức”; nhưng ở một số loài cá cho thấy cơ quan hô hấp phụ đóng một vai trò quan trọng như cơ quan hô hấp chính là mang. 4.1 Hô hấp bằng ruột Khi trong nước thiếu dưỡng khí hay CO2 tăng cao, một số loài cá thuộc họ cá chạch như: Cobitis fossilis, C. taenia, ... thường ngoi lên mặt nước đớp không khí. Không khí được trao đổi ở đoạn ruột sau, phần khí thừa thoát ra ngoài qua hậu môn. 4.2 Hô hấp bằng da Nói chung những loài cá không vảy hay tương đối ít vảy đều thực hiện cách hô hấp này như cá chình (Anguillidae), cá lon (Blenniidae), cá bống trắng (Gobiidae), cá nheo (Siluridae). Các loài cá này có cấu tạo da rất đặc biệt, dưới lớp da ngoài được tạo nên bằng tế bào thượng bì dạng vảy một lớp có rất nhiều vi ti huyết quản mà sự trao đổi khí giữa không khí và máu có thể tiến hành dễ dàng. 4.3 Cơ quan trên mang Cơ quan hô hấp trên mang của cá rất đa dạng, có thể là những tế bào thượng bì hoặc túi thừa của hầu như ở cá lóc (Channa spp.), có thể là những tế bào thượng bì hoặc túi thừa của xoang mang như cơ quan mê lộ của cá rô đồng (Anabas spp.) hay hoa khế của cá trê (Clarias spp.). Cả hai cơ quan hô hấp chính là mang và hô hấp phụ trên mang đều H.10 Cơ quan trên mang của cá rô đồng (hình trên) và cá trê (hình dưới) SLĐVTS NVTư 36 hỗ trợ cho nhau nếu ngăn cản một trong 2 phương thức này đều làm cho cá chết; như cá rô bắt ra khỏi nước 6–8 giờ thì cá chết hoặc cá mùi sống trong nước đầy đủ oxygen nhưng không thở khí trời cũng chết. 4.4 Hô hấp bằng phổi “Phổi” của các loài cá phổi (Dipnoi) là do bóng bơi biến đổi thành. Vách của chúng không phải cấu tạo bằng những phế quản mà có nhiều nếp gấp dọc, ở giữa những nếp gấp này có rãnh, trên mặt rãnh có tiên mao (flagellum) và bên dưới có rất nhiều vi ti huyết quản phân bố. Khi trong nước đầy đủ oxygen chúng tiến hành hô hấp bằng mang. Khi hàm lượng oxygen giảm xuống hay khi nước khô cạn chúng tiến hành hô hấp bằng phổi. Cá phổi Châu Úc (Ceratodus spp.) cứ cách 40–50 phút nổi lên hô hấp không khí một lần, cá phổi Châu Mỹ (Lepidosiren spp.) và cá phổi Châu Phi (Protopterus spp.) thì chui xuống bùn, tiết ra chất nhầy bao bọc lấy cơ thể, chuyển qua trạng thái tiềm sinh, lúc bấy giờ hoàn toàn hô hấp bằng phổi. 5. Bóng Bơi (swim bladder) 5.1 Cấu tạo và hình thái Bóng bơi cá xương là một cơ quan rỗng nằm giữa ống tiêu hóa và thận chứa đầy một hỗn hợp CO2, O2 và N2 mà tỉ lệ thường tìm thấy khác xa tỉ lệ có trong không khí. Bóng bơi có thể hoạt động như một cơ quan thủy tĩnh hay có vai trò hô hấp, nó có thể hoạt động như một cơ quan nhận cảm hay phục vụ cho việc tạo ra âm thanh. Ống nối giữa bóng bơi và ống tiêu hóa (thực quản) có thể bị thoái hóa hay được duy trì khi cá trưởng thành. Ở cá xương có bong bóng hở (physostomous) ống nối vẫn duy trì và bóng bơi mở vào ống tiêu hóa. Trong cá xương có bong bóng kín, phần gần tâm của ống nối thoái hóa và bóng bơi bị đóng kín. H.11 Vị trí tuyến khí và sự cung cấp máu ở bóng bơi của cá SLĐVTS NVTư 37 5.2 Chức năng 5.2.1 Chức năng thủy tĩnh Một trong những chức năng chính của bóng bơi là cơ quan thủy tĩnh. Bằng cách tăng hay giảm khối lượng trên mỗi đơn vị thể tích, nó sẽ tạo ra tỉ trọng của cá cao hơn hay kém hơn môi trường của nó. Theo tính toán, nếu bóng bơi là cơ quan thủy tĩnh (giúp cá nổi trong nước) thì ở cá nước ngọt nó phải chiếm khoảng 8% và ở cá biển là khoảng 5% thể tích của cá (Evans, 1997). Những khảo sát thực tế đã chứng minh giả thiết của Evans (1997). 5.2.2 Chức năng hô hấp của bóng bơi a. Bóng bơi như một phổi Ở một vài bóng bơi hở, bóng bơi có thể có chức năng như một “phổi”, những cá như vậy thường sống nơi đầm lầy và thủy vực thường xuyên có áp suất CO2 cao và O2 thấp. b. Bóng bơi như một kho dự trữ oxygen Cá có bóng bơi kín hoặc hở nhưng không có chức năng như phổi, có thể tích tụ O2 trong bóng bơi như một sự dự trữ khẩn cấp trong thời gian ngắn. 5.2.3 Chức năng nhận cảm áp lực của bóng bơi Sự nén và xả khí của bóng bơi xảy ra khi cá được xử lý đối với những thay đổi áp lực; như vậy bóng bơi sẽ hoạt động như khí áp kế, áp kế và máy nghe trong nước (hydrophone). 5.2.4 Chức năng phát ra âm thanh của bóng bơi Ở một số loài cá có khả năng tạo ra tiếng động. Tuy nhiên số loài này rất ít. Một phần lớn các tiếng động phát ra ở cá gắn liền với hoạt động của bóng bơi. Tiếng động có thể sản sinh ra nhờ sự luân chuyển hàng loạt các bóng khí từ trong bóng bơi hoặc là việc co rút của các cơ được phân bố trong cấu trúc của bóng bơi hay là những lớp cơ của cơ thể. Tiếng động được sản sinh ra ở cá mang một ý nghĩa sinh học khác nhau. Một trong những dấu hiệu quan trọng nhất của tiếng động là đáp ứng những hành vi chín mùi sinh dục trong hoạt động sinh sản của cá.
File đính kèm:
- giao_trinh_sinh_ly_dong_vat_thuy_san_chuong_iii_sinh_ly_ho_h.pdf