Tài liệu Đại số tuyến tính - Mỵ Vinh Quang

Tóm tắt Tài liệu Đại số tuyến tính - Mỵ Vinh Quang: ...ó Ai chính là ma trận thu được từ ma trận A bằng cách thay cột i của A bằng cột tự do b1 b2 ... bn  Ví dụ 1: Giải hệ phương trình:  ax1 + bx2 = c cx2 + ax3 = b cx1 + bx3 = a trong đó a, b, c là ba số khác 0. Giải: Ta có: detA = ∣∣∣∣∣∣ a b 0 0 c a c 0 b ∣∣∣∣∣∣ = 2abc 6...chiều của không gian giao và không gian tổng ta có định lý sau. Định lý. Nếu A, B là các không gian con của không gian vectơ V (hữu hạn chiều) thì: dim(A+B) = dimA+ dimB − dim(A+B) Chứng minh. Giả sử α1, . . . , αr là cơ sở của A ∩ B (dimA ∩ B = r). Vì α1, . . . , αr là hệ vectơ độc lập tuyến tí...α), (β) bất kỳ. Do đó, để kiểm tra xem f có là đơn cấu, toàn cấu hay không, ta tìm ma trận của f trong cặp cơ sở (α), (β) nào đó rồi tìm rankA. Nếu rankA = dimV thì f là đơn cấu, còn nếu rankA = dimU thì f là toàn cấu. 6.3 Sự đẳng cấu của không gian các ánh xạ tuyến tính và không gian các ma trậ...

pdf138 trang | Chia sẻ: havih72 | Lượt xem: 390 | Lượt tải: 0download
Nội dung tài liệu Tài liệu Đại số tuyến tính - Mỵ Vinh Quang, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ếu trực giao và đường trực giao
3.1 Định lý - Định nghĩa
Cho E là không gian vectơ Euclide, và U là không gian vectơ con của E. Khi đó mỗi vectơ
α ∈ E đều viết được duy nhất dưới dạng:
α = α′ + β
trong đó α′ ∈ U và β ⊥ U .
Vectơ α′ gọi là hình chiếu trực giao của vectơ α lên U , còn β = α − α′ là đường trực giao
hạ từ α xuống U .
Chứng minh
Giả sử e1, . . . , ek là một cơ sở trực chuẩn của U . Vì α
′ ∈ U nên α′ có dạng:
α′ = x1e1 + · · ·+ xkek
Ta cần tìm x1, . . . , xk để β = α− α′ ⊥ U .
β = α− α′ ⊥ U ⇔ α− α′ ⊥ ej, ∀j = 1, 2, . . . , k
⇔ 〈α− α′, ej〉 = 0
⇔ 〈α, ej〉 − 〈α′, ej〉 = 0
⇔ 〈α, ej〉 −
〈 k∑
i=1
xiei, ej
〉
= 0
⇔ 〈α, ej〉 − xj = 0
⇔ xj = 〈α, ej〉
Vậy vectơ α′ xác định duy nhất bởi
α′ =
k∑
j=1
〈α, ej〉.ej
trong đó e1, . . . , ek là một cơ sở trực chuẩn của U , còn vectơ β xác định bởi β = α− α′.
3.2 Cách tìm hình chiếu trực giao
Cho không gian vectơ Euclide E, và U là không gian vectơ con của E. Cho vectơ α ∈ E.
Để tìm hình chiếu trực giao của vectơ α lên U , ta có thể tìm bằng hai cách sau:
6
1. Cách 1. Tìm một cơ sở trực chuẩn e1, e2, . . . , ek của U . Khi đó hình chiếu trực giao α
′ của
vectơ α xác định bởi công thức:
α′ = 〈α, e1〉.e1 + 〈α, e2〉.e2 ++ · · ·+ 〈α, ek〉.ek
2. Giả sử u1, . . . , uk là cơ sở bất kỳ của U . Vì α
′ ∈ U nên α′ = x1u1 + · · · + xkuk. Ta cần
tìm x1, . . . , xk để vectơ α− α′ ⊥ U .
α− α′ ⊥ U
⇔ α− α′ ⊥ uj với j = 1, 2, . . . , k
⇔ 〈α′, uj〉 = 〈α, uj〉
⇔ x1〈u1, uj〉+ x2〈u2, uj〉+ · · ·+ xk〈uk, uj〉 = 〈α, uj〉
Lần lượt cho j = 1, 2, . . . , k, ta có x1, . . . , xk là nghiệm của hệ phương trình sau:
〈u1, u1〉x1 + 〈u2, u1〉x2 + · · ·+ 〈uk, u1〉xk = 〈α, u1〉
〈u1, u2〉x1 + 〈u2, u2〉x2 + · · ·+ 〈uk, u2〉xk = 〈α, u2〉
...
〈u1, u1〉xk + 〈u2, uk〉x2 + · · ·+ 〈uk, uk〉xk = 〈α, uk〉
(∗)
Như vậy, để tìm hình chiếu α′ của α lên U , ta cần tìm một cơ sở u1, . . . , uk của U , sau
đó lập hệ phương trình (∗). Giải hệ (∗) ta sẽ có nghiệm duy nhất (x1, . . . , xk). Khi đó:
α′ = x1u1 + · · ·+ xkuk.
Ví dụ
Trong không gian Euclide R4 cho không gian vectơ con U sinh bởi các vectơ:
α1 = (0, 1, 0, 1)
α2 = (0, 1, 1, 0)
α3 = (1, 1, 1, 1)
α4 = (1, 2, 1, 2)
(U = 〈α1, α2, α3, α4〉)
Tìm hình chiếu trực giao của vectơ x = (1, 1, 0, 0) lên U .
Giải
Cách 1 :
Đầu tiên ta tìm một cơ sở trực chuẩn của U . Ở ví dụ trước ta đã tìm được một cơ sở trực
chuẩn của U là:
e1 =
(
0,
1√
2
, 0,
1√
2
)
e2 =
(
0,
1√
6
,
2√
6
,
−1√
6
)
e3 =
(
3
2
√
3
,
−1
2
√
3
,
1
2
√
3
,
1
2
√
3
)
Do đó, hình chiếu trực giao của x là:
x′ = 〈x, e1〉e1 + 〈x, e2〉e2 + 〈x, e3〉e3
=
1√
2
e1 +
1√
6
e2 +
1√
3
e3
7
=(
1
2
,
1
2
,
1
2
,
1
2
)
Cách 2 :
Đầu tiên tìm một cơ sở của U . Dễ thấy α1, α2, α3 là một cơ sở của U . Sau đó lập hệ phương
trình dạng (∗).
Ta có:
〈α1, α1〉 = 2
〈α2, α1〉 = 1
〈α3, α1〉 = 2
〈x, α1〉 = 1
〈α2, α2〉 = 2
〈α3, α2〉 = 2
〈x, α2〉 = 1
〈α3, α3〉 = 4
〈x, α3〉 = 2
Do đó, hệ phương trình (∗) trong trường hợp này có dạng:
2x1 + x2 + 2x3 = 1
x1 + 2x2 + 2x3 = 1
2x1 + 2x2 + 4x3 = 2
Đây là hệ Cramer, giải hệ này ta có x1 = 0, x2 = 0, x3 =
1
2
. Do đó, hình chiếu trực giao
của vectơ x là:
x′ = 0α1 + 0α2 +
1
2
α3 =
(
1
2
,
1
2
,
1
2
,
1
2
)
3.3 Định nghĩa
Cho U là không gian vectơ con của không gian Euclide E và α là vectơ thuộc E. Khi đó
góc giữa hai vectơ α và hình chiếu trực giao α′ cũng được gọi là góc giữa vectơ α và không gian
con U .
Độ dài của đường thẳng trực giao β = α − α′ từ α đến U gọi là khoảng cách từ vectơ α
đến U .
4 Phép biến đổi trực giao và phép biến đổi đối xứng
4.1 Hai không gian Euclide đẳng cấu
Cho hai không gian vectơ Euclide E1 với tích vô hướng 〈 , 〉1 và E2 với tích vô hướng 〈 , 〉2.
Ta nói E1 đẳng cấu với E2, ký hiệu E1 ∼= E2 nếu tồn tại đẳng cấu giữa hai không gian vectơ
f : E1 → E2 thỏa:
∀α, β ∈ E1, 〈α, β〉1 = 〈f(α), f(β)〉2
Quan hệ đẳng cấu là một quan hệ tương đương và ta có kết quả sau:
Định lý. Hai không gian Euclide đẳng cấu khi và chỉ khi chúng có cùng số chiều.
8
Chứng minh
Nếu E1 ∼= E2 thì theo định nghĩa E1, E2 là các không gian vectơ đẳng cấu nên
dimE1 = dimE2.
Ngược lại, giả sử dimE1 = dimE2 = n và α1, . . . , αn (α), β1, . . . , βn (β) lần lượt là cơ
sở trực chuẩn của E1 và E2. Khi đó tồn tại ánh xạ tuyến tính f : E1 → E2, f(αi) = βi,
i = 1, 2, . . . , n. Vì f biến cơ sở thành cơ sở nên f là đẳng cấu không gian vectơ. Ta chứng minh
〈x, y〉1 = 〈f(x), f(y)〉2.
Thật vậy, ∀x, y ∈ E1, ta có:
x =
n∑
i=1
xiαi
y =
n∑
j=1
yiαj
Khi đó:
〈x, y〉1 =
〈∑
xiαi,
∑
yjαj
〉
1
=
∑
i,j
xiyj〈αi, αj〉1
=
n∑
i=1
xiyi
〈f(x), f(y)〉2 =
〈
f(
∑
xi, αi), f(
∑
yjαj)
〉
2
=
〈∑
xif(αi),
∑
yjf(αj)
〉
2
=
〈∑
xiβi),
∑
yjβj
〉
2
=
∑
xiyj〈βi, βj〉2
=
n∑
i=1
xiyi
Vậy 〈x, y〉1 = 〈f(x), f(y)〉2 và E1 ∼= E2.
4.2 Phép biến đổi trực giao
4.2.1 Ma trận trực giao
Ma trận vuông A gọi là ma trận trực giao nếu A−1 = At (At: ma trận chuyển vị của A).
4.2.2 Định nghĩa
Cho E là không gian vectơ Euclide. Một phép biến đổi tuyến tính f của E gọi là phép biến
đổi trực giao của E nếu f bảo toàn tích vô hướng, tức là:
∀α, β ∈ E, 〈α, β〉 = 〈f(α), f(β)〉
Dễ thấy, phép biến đổi trực giao là một song ánh vì:
f(α) = 0⇔ 〈f(α), f(α)〉 = 0⇔ 〈α, α〉 = 0⇔ α = 0
Tính chất cơ bản nhất của phép biến đổi trực giao được cho trong định lý sau.
9
4.2.3 Định lý
Cho f là phép biến đổi tuyến tính của không gian vectơ Euclide E. Khi đó các khẳng định
sau tương đương:
1. f là phép biến đổi trực giao.
2. f biến cơ sở trực chuẩn của E thành cơ sở trực chuẩn của E.
3. Ma trận của f trong một cơ sở trực chuẩn là ma trận trực giao.
Chứng minh
1)⇒ 2) Giả sử e1, . . . , en là cơ sở trực chuẩn của E. Khi đó:
〈ei, ej〉 = δij =
{
1 nếu i = j
0 nếu i 6= j
Vì f là phép biến đổi trực giao, nên:
〈f(ei), f(ej)〉 = 〈ei, ej〉 = δij =
{
1 nếu i = j
0 nếu i 6= j
Do đó, f(e1), . . . , f(en) là cơ sở trực chuẩn.
2)⇒ 3) Ma trận của f trong cơ sở trực chuẩn e1, . . . , en theo định nghĩa chính là ma trận đổi
cơ sở từ e1, . . . , en sang cơ sở trực chuẩn f(e1), . . . , f(en). Vì ma trận đổi cơ sở giữa hai
cơ sở trực chuẩn là ma trận trực giao (xem bài tập 10) nên ma trận của f trong cơ sở
trực chuẩn là ma trận trực giao.
3)⇒ 1) Giả sử e1, . . . , en (e) là cơ sở trực chuẩn của E và A = Af/(e) là ma trận trực giao
(At = A−1).
Với α, β ∈ E, α = a1e1 + · · ·+ anen, β = b1e1 + · · ·+ bnen
Khi đó,
〈α, β〉 = [α]t/(e) [β]/(e)
= [α]t/(e)I[β]/(e)
= [α]t/(e)A
−1A[β]/(e)
= [α]t/(e)A
tA[β]/(e)
= (A[α]/(e))
t (A[β]/(e))
= [f(α)]t/(e) .[f(β)]/(e)
= 〈f(α), f(β)〉
4.3 Phép biến đổi đối xứng
4.3.1 Định nghĩa
Cho E là không gian vectơ Euclide. Phép biến đổi tuyến tính f của E gọi là phép biến đổi
đối xứng nếu ∀α, β ∈ E : 〈f(α), β〉 = 〈α, f(β)〉.
10
4.3.2 Định lý
Một phép biến đổi tuyến tính của E là phép biến đổi đối xứng khi và chỉ khi ma trận của
f trong một cơ sở trực chuẩn là ma trận đối xứng.
Chứng minh
Giả sử f : E → E là phép biến đổi tuyến tính, ma trận của f trong cơ sở trực chuẩn
e1, . . . , en là A = [aij]. Khi đó:
f(ei) =
n∑
k=1
akiek
Với mọi i, j ta có:
〈f(ei), ej〉 =
〈 n∑
k=1
akiek, ej
〉
=
n∑
k=1
aki〈ek, ej〉 = aji
〈ei, f(ej)〉 =
〈
ei,
n∑
k=1
akjek
〉
=
n∑
k=1
akj〈ei, ek〉 = aij
• Nếu f là phép biến đổi đối xứng, thì 〈f(ei), ej〉 = 〈ei, f(ej)〉. Do đó, aji = aij. Vậy ma
trận A là ma trận đối xứng.
• Nếu ma trận A đối xứng, tức là aji = aij thì 〈f(ei), ej〉 = 〈ei, f(ej)〉 ∀i, j.
Nếu α =
n∑
i=1
xiei, β =
n∑
j=1
yjej của E thì:
〈f(α), β〉 = 〈∑ xif(ei),∑ yjej〉 =∑
i,j
xiyj〈f(ei), ej〉 =
∑
i,j
xiyj〈ei, f(ej)〉
=
〈∑
xiei,
∑
yjf(ej)
〉
= 〈α, f(β)〉
Vậy f là phép biến đổi đối xứng.
11
ĐẠI SỐ CƠ BẢN
(ÔN THI THẠC SĨ TOÁN HỌC)
Bài 19. Bài tập về không gian véctơ Euclide
PGS TS Mỵ Vinh Quang
Ngày 10 tháng 3 năm 2006
1. Tìm một cơ sở trực giao, cơ sở trực chuẩn của không gian véctơ con L của R4 trong các
trường hợp sau:
a. L = 〈α1, α2, α3〉 với α1 = (1, 1, 0, 0), α2 = (1, 1, 1, 1), α3 = (0,−1, 0, 1)
b. L = 〈α1, α2, α3〉 với α1 = (1, 2, 2,−1), α2 = (1, 1,−5, 3), α3 = (3, 2, 8,−7).
c. L =
{
(x1, x2, x3, x4)
∣∣∣∣{ x1 − x2 + x4 = 0x2 − x3 − x4 = 0
}
Giải. a. Dễ thấy α1, α2, α3 ĐLTT nên α1, α2, α3 là cơ sở của L. Để tìm cơ sở trực giao
của L ta chỉ cần trực giao hóa hệ véctơ α1, α2, α3. Ta có:
β1 = α1
β2 = α2 − 〈α2, β1〉〈β1, β1〉β1 = (1, 1, 1, 1)−
2
2
(1, 1, 0, 0) = (0, 0, 1, 1)
β3 = α3 − 〈α3, β1〉〈β1, β1〉β1 −
〈α3, β2〉
〈β2, β2〉β2
= (0,−1, 0, 1)− −1
2
(1, 1, 0, 0)− 1
2
(0, 0, 1, 1) = (
1
2
,−1
2
,−1
2
,
1
2
)
Ta có thể chọn β3 = (1,−1,−1, 1). Vậy, cơ sở trực giao của L là:
β1 = (1, 1, 0, 0), β2 = (0, 0, 1, 1), β3 = (1,−1,−1, 1)
Trực chuẩn hóa cơ sở trực giao trên, ta được cơ sở trực chuẩn của L là:
e1 = (
1√
2
,
1√
2
, 0, 0), e2 = (0, 0,
1√
2
,
1√
2
), e3 = (
1
2
,−1
2
,−1
2
,
1
2
)
b. Giải tương tự câu a., chi tiết dành cho bạn đọc.
c. Đầu tiên, ta tìm một cơ sở của L. L là không gian nghiệm của hệ{
x1 − x2 + x4 = 0
x2 − x3 − x4 = 0 (1)
do đó cơ sở của L là hệ nghiệm cơ bản của hệ (1). Hệ (1) có vô số nghiệm phụ thuộc
2 tham số x3, x4. Ta có:
x2 = x3 + x4
x1 = x2 − x4 = x3
1
do đó, hệ nghiệm cơ bản của hệ (1) là:
α1 = (1, 1, 1, 0); α2 = (0, 1, 0, 1)
Do đó, cơ sở của L là α1, α2. Trực giao hóa hệ véctơ α1, α2, ta sẽ được cơ sở trực giao
của L.Ta có:
β1 = α1
β2 = α2 − 〈α2, β1〉〈β1, β1〉β1 = (0, 1, 0, 1)−
1
3
(1, 1, 1, 0) = (−1
3
,
2
3
,−1
3
, 1)
Ta có thể chọn β2 = (−1, 2,−1, 3) và cơ sở trực giao của L là:
β1 = (1, 1, 1, 0), β2 = (−1, 2,−1, 3)
Trực chuẩn hóa cơ sở trực giao β1, β2 ta được cơ sở trực chuẩn của L là:
e1 = (
1√
3
,
1√
3
,
1√
3
, 0), e2 = (− 1√
15
,
2√
15
,− 1√
15
,
3√
15
)
2. Chứng minh các hệ véctơ sau là hệ trực giao trong R4. Hãy bổ sung chúng để được một cơ
sở trực giao của R4
a. α1 = (1, 1, 1, 1), α2 = (1, 0,−1, 0)
b. α1 = (0, 0, 1, 1), α2 = (1, 1, 1− 1)
Giải. a. Vì 〈α1, α2〉 = 0 nên α1⊥α2. Để bổ sung được một cơ sở trực giao của R4, đầu tiên
ta phải bổ sung thêm 2 véctơ α3, α4 của R4 để được một cơ sở của R4, sau đó ta trực
giao hóa cơ sở đó, ta sẽ được cơ sở trực giao của R4, chứa các véctơ α1, α2.
Có nhiều cách chọn các véctơ α3, α4 để α1, α2, α3, α4 là cơ sở của R4 (chọn để định
thức cấp 4 tương ứng là khác 0). Ví dụ ta có thể chọn α3 = (0, 0, 1, 0), α4 = (0, 0, 0, 1).
Khi đó định thức cấp 4 tương ứng của hệ α1, α2, α3, α4 bằng 1, nên hệ α1, α2, α3, α4
ĐLTT nên là cơ sở của R4. Trực giao hóa hệ véctơ α1, α2, α3, α4.
β1 = α1
β2 = α2 − 〈α2, β1〉〈β1, β1〉β1
= α2 − 0.β1 = α2
β3 = α3 − 〈α3, β1〉〈β1, β1〉β1 −
〈α3, β2〉
〈β2, β2〉β2
= (0, 0, 1, 0)− 1
4
(1, 1, 1, 1)− −1
2
(1, 0,−1, 0) = (1
4
,−1
4
,
1
4
,−1
4
)
Ta có thể chọn β3 = (1,−1, 1,−1)
β4 = α4 − 〈α4, β1〉〈β1, β1 β1 −
〈α4, β2〉
〈β2, β2〉β2 −
〈α4, β3〉
〈β3, β3〉β3
= (0, 0, 0, 1)− 1
4
(1, 1, 1, 1)− 0
2
(1, 0,−1, 0)− −1
4
(1,−1, 1,−1)
= (0,−1
2
, 0,
1
2
)
Ta có thể chọn β4 = (0,−1, 0, 1)
2
Vậy ta có thể bổ sung thêm 2 véctơ
β3 = (1,−1, 1,−1), β4 = (0,−1, 0, 1)
để được α1, α2, β3, β4 là cơ sở trực giao của R4.
b. Giải tương tự câu a., chi tiết xin dành cho bạn đọc.
3. Hãy tìm hình chiếu trực giao và khoảng cách của véctơ x lên không gian con L của R4 với:
a. x = (1,−1, 1, 0), L = 〈α1, α2, α3〉, trong đó
α1 = (1, 1, 0, 0), α2 = (1, 1, 1, 1), α3 = (0,−1, 0, 1)
b. x = (1, 0, 1, 2), L =
{
(x1, x2, x3, x4)
∣∣∣∣ x1 − x2 + x4 = 0x2 − x3 + x4 = 0
}
Giải. a. Cách 1. Đầu tiên ta một tìm cơ sở trực chuẩn của L. Theo bài 1, cơ sở trực
chuẩn của L là
e1 = (
1√
2
,
1√
2
, 0, 0), e2 = (0, 0,
1√
2
,
1√
2
), e3 = (
1
2
,−1
2
,
1
2
,
1
2
)
Do đó, hình chiếu trực giao x′ của x lên L là
x′ = 〈x, e1〉e1 + 〈x, e2〉e2 + 〈x, e3〉e3
= 0.e1 +
1√
2
e2 +
1
2
e3
= (
1
4
,−1
4
,
1
4
,
3
4
)
Khoảng cách từ véctơ x đến L là độ dài của véctơ x− x′ = (3
4
,−3
4
, 3
4
,−3
4
) do đó,
d(x, L) = ‖x− x′‖ = 36
16
= 9
4
.
Cách 2. Dễ thấy một cơ sở của L là α1, α2, α3 và
〈α1, α1〉 = 2, 〈α2, α1〉 = 2, 〈α3, α1〉 = −1
〈x, α1〉 = 0, 〈α2, α2〉 = 4, 〈α3, α2〉 = 0,
〈x, α2〉 = 1, 〈α3, α3〉 = 2, 〈x, α3〉 = 1
Do đó, hình chiếu x′ của x có dạng
x′ = x1α1 + x2α2 + x3α3
trong đó x1, x2, x3 là nghiệm của hệ
2x1 + 2x2 − x3 = 0
2x1 + 4x2 + 0x3 = 1
−x1 + 0x2 + 2x3 = 1
Giải hệ, ta có nghiệm x1 = 0, x2 =
1
4
, x3 =
1
2
, do đó
x′ = 0α1 +
1
4
α2 +
1
2
α3 = (
1
4
,−1
4
,
1
4
,
3
4
)
và d(x, L) = ‖x− x′‖ = 9
4
.
3
b. Cách 1. Tìm một cơ sở trực chuẩn của L, theo bài 1c., đó là cơ sở:
e1 = (
1√
3
,
1√
3
,
1√
3
, 0), e2 = (− 1√
15
,
2√
15
,− 1√
15
,
3√
15
)
Do đó, hình chiếu trực giao x′ của x lên L là:
x′ = 〈x, e1〉.e1 + 〈x, e2〉.e2 = 2√
3
e1 +
4√
15
e2
= (
6
15
,
18
15
,
6
15
,
12
15
) = (
2
5
,
6
5
,
2
5
,
4
5
)
và khoảng cách từ x đến L là:
d(x, L) = ‖x− x′‖ =
∥∥∥∥(35 ,−65 , 35 , 65)
∥∥∥∥ = 9025 = 185
Cách 2. Đầu tiên ta tìm một cơ sở của L. Một cơ sở của L là hệ nghiệm cơ bản của
hệ: {
x1 − x2 + x4 = 0
x2 − x3 + x4 = 0
theo bài 1c., cơ sở đó là
α1 = (1, 1, 1, 0), α2 = (0, 1, 0, 1)
Ta có
〈α1, α1〉 = 3, 〈α2, α1〉 = 1, 〈x, α1〉 = 2, 〈α2, α2〉 = 2, 〈x, α2〉 = 2
Hình chiếu trực giao x′ của x lên L là véctơ x′ = x1α1 + x2α2, trong đó, x1, x2 là
nghiệm của hệ {
3x1 + x2 = 2
x1 + 2x2 = 2
do đó, x1 =
2
5
, x2 =
4
5
.
Vậy
x′ =
2
5
α1 +
4
5
α2 = (
2
5
,
6
5
,
2
5
,
4
5
)
và d(x, L) = ||x− x′|| = 18
5
.
4. Cho L là không gian véctơ con của không gian Euclide E và xo ∈ E. Ta gọi tập
P := L+ xo = {x+ xo|x ∈ L}
là một đa tạp tuyến tính của E. Khoảng cách từ một véctơ α ∈ E đến đa tạp P , ký hiệu
d(α, P ) xác định bởi:
d(α, P ) = min{‖α− u‖ : u ∈ P}
Chứng minh rằng khoảng cách d(α, P ) bằng độ dài đường trực giao hạ từ véctơ α− xo đến
L (tức là d(α, P ) = d(α− xo, L).
4
Giải. Giả sử hình chiếu trực giao của α − xo lên L là β, tức là α − xo = β + γ, trong đó,
β ∈ L, γ⊥L. Khi đó
d(α− xo, L) = ‖γ‖
với mọi véctơ u = xo + y ∈ P (tức là y ∈ L), ta có
‖α− u‖ =√〈α− u, α− u〉 =√〈α− xo − y, α− xo − y〉
=
√〈β − y + γ, β − y + γ〉 =√‖β − y‖2 + ‖γ‖2 ≥ ‖γ‖
(〈β − y, γ〉 = 0 vì γ⊥β − y ∈ L)
do đó min ‖α− u‖ = ‖γ‖, dấu bằng xảy ra khi
‖β − y‖2 = 0 ⇐⇒ β = y = u− xo
⇐⇒ u = xo + β
Vậy
d(α, P ) = min{‖α− u‖} = d(α− xo, L)
dấu bằng xảy ra khi và chỉ khi u = xo + β, trong đó β là hình chiếu trực giao của α − xo
lên L.
5. Tìm khoảng cách từ véctơ α = (2, 1, 4, 4) đến đa tạp P xác định bởi hệ phương trình tuyến
tính: {
x1 − x2 + x4 = 3
x2 − x3 + x4 = 3 (1)
Giải. Đầu tiên ta phải viết đa tạp P dưới dạng
(P ) = L+ xo = {x+ xo|x ∈ L}
trong đó, L là không gian véctơ con của R4. Vì tập nghiệm của hệ phương trình (1) chính
bằng tập nghiệm hệ phương trình tuyến tính thuần nhất tương ứng của hệ (1) cộng với
nghiệm riêng của hệ (1), do đó, L chính là không gian con các nghiệm của hệ thuần nhất
tương ứng hệ (1) {
x1 − x2 + x4 = 0
x2 − x3 + x4 = 0 (L)
còn xo là nghiệm riêng bất kỳ của hệ (1). Ta có xo = (1, 2, 3, 4) là nghiệm của hệ (1)
Theo bài tập 4. d(α, P ) = d(α − xo, L). Vậy ta cần tìm khoảng cách từ véctơ α − xo =
(1,−1, 1, 0) đến không gian con L các nghiệm của hệ{
x1 − x2 + x4 = 0
x2 − x3 + x4 = 0
theo bài 3., d(α− xo, L) = 94
Vậy, d(α, P ) = 9
4
6. Cho L là KGVT con của không gian Euclide E. Ký hiệu:
L⊥ = {x ∈ E|x⊥L}
Chứng minh
a. L⊥ là KGVT con của E. L⊥ gọi là phần bù trực giao của L.
5
b. (L⊥)
⊥
= L
c. L+ L⊥ = E, L⊥ ∩ L = {0}
d. dimL⊥ + dimL = dimE
Giải. a. Kiểm tra trực tiếp dựa vào tiêu chuẩn không gian véctơ con.
b. Giả sử α ∈ L, khi đó ∀β ∈ L⊥, ta có β⊥L, do đó β⊥α. Vậy α⊥L⊥ nên α ∈ (L⊥)⊥ .
Ngược lại, giả sử α ∈ (L⊥)⊥ , khi đó α⊥L⊥. Hình chiếu trực giao của α lên L là α′, ta
có
α = α′ + β, β⊥L, α′ ∈ L
vì β ∈ L⊥ nên β⊥α, β⊥α′, do đó
0 = 〈α, β〉 = 〈α′ + β, β〉 = 〈α′, β〉+ 〈β, β〉 = 〈β, β〉
từ đó 〈β, β〉 = 0 nên β = 0 và α = α′ ∈ L.
c. Với mỗi α ∈ L, gọi α′ là hình chiếu của α lên L, ta có:
α = α′ + β, α′ ∈ L, β⊥L
tức là β ∈ L⊥ nên α ∈ L+ L⊥. Vậy L+ L⊥ = E.
Nếu α ∈ L⊥ ∩ L thì α ∈ L⊥ nên α⊥L, do đó α⊥α tức là 〈α, α〉 = 0. Vậy, α = 0 nghĩa
là L⊥ ∩ L = {0}.
d. dimL⊥ + dimL = dim(L⊥ + L)− dim(L⊥ ∩ L) = dimE − dim{0} = dimE
7. Tìm cơ sở trực giao, cơ sở trực chuẩn của không gian con L⊥ của R4, biết L là các không
gian con dưới đây:
a. L = 〈α1, α2〉 với α1 = (1, 0,−1, 2), α2 = (−1, 1, 0,−1)
b. L là không gian con các nghiệm của hệ
x1 − x2 + x3 − x4 = 0
2x1 + x2 − x3 + x4 = 0
x1 + 2x2 − 2x3 + 2x4 = 0
(1)
Giải. Để tìm cơ sở trực giao, cơ sở trực chuẩn của L⊥, ta tìm một cơ sở của L⊥. Sau đó,
sẽ trực giao hóa, trực chuẩn hóa như trong bài tập 1.
a. Véctơ
x = (x1, x2, x3, x4) ∈ L⊥ ⇐⇒ x⊥L
⇐⇒ x⊥α1 và x⊥α2
⇐⇒
{ 〈x, α1〉 = 0
〈x, α2〉 = 0
⇐⇒
{
x1 − x3 + 2x4 = 0
−x1 + x2 − x4 = 0 (2)
Vậy, L⊥ chính là không gian nghiệm của hệ phương trình tuyến tính trên, do đó hệ
nghiệm cơ bản của hệ phương trình tuyến tính (2) chính là một cơ sở của L⊥. Việc
tìm cơ sở trực giao, trực chuẩn của L⊥ bây giờ được tiến hành giống như trong bài
tập 1c. Các tính toán chi tiết xin dành cho bạn đọc.
6
b. Véctơ
x = (x1, x2, x3, x4) ∈ L ⇐⇒ (x1, x2, x3, x4) là nghiệm của hệ (1)
⇐⇒

〈x, β1〉 = 0
〈x, β2〉 = 0
〈x, β3〉 = 0
trong đó β1 = (1,−1, 1,−1), β2 = (2, 1,−1, 1), β3 = (1, 2,−2, 2))
⇐⇒ x⊥β1, x⊥β2, x⊥β3
⇐⇒ x⊥〈β1, β2, β3〉
Như vậy x ∈ L⇔ x⊥U = 〈β1, β2, β3〉,⇔ x ∈ U⊥ tức là L = U⊥, do đó L⊥ = U . Vậy,
L⊥ = 〈β1, β2, β3〉. Từ đó, một hệ con ĐLTT tối đại của hệ β1, β2, β3 là cơ sở của L⊥.
Dễ thấy β1, β2 là cơ sở của L
⊥. Việc trực giao hóa, trực chuẩn hóa hệ véctơ β1, β2 để
được cơ sở trực giao, cơ sở trực chuẩn của L⊥ khá đơn giản (tiến hành như bài tập
1a). Chi tiết xin được dành cho bạn đọc.
8. Cho L1, L2 là các không gian con của KGVT Euclide E với dimL1 < dimL2. Chứng minh
tồn tại véctơ α 6= 0, α ∈ L2 và α trực giao với L1
Giải. Ta có
dimL1 + dimL
⊥
1 = dimL2 + dimL
⊥
2 = dimE (Bài tập 6)
Do dimL1 < dimL2 nên dimL
⊥
1 > dimL
⊥
2
Mặt khác
dim(L2 ∩ L⊥1 ) = dimL2 + dimL⊥1 − dim(L2 + L⊥1 )
> dimL2 + dimL
⊥
2 − dim(L2 + L⊥1 )
= dimE − dim(L2 + L⊥1 ) ≥ 0
Vậy dim(L2 ∩ L⊥1 ) > 0 do đó L2 ∩ L⊥1 6= {0}, nên tồn tại véctơ α ∈ L2 ∩ L⊥1 , α 6= 0. Rõ
ràng α ∈ L2 và α⊥L1
9. Chứng minh rằng mọi hệ véctơ trực giao không chứa véctơ không đều độc lập tuyến tính.
Giải. Giả sử α1, . . . , αm là hệ trực giao, không chứa véctơ không (αi 6= 0) của không gian
véctơ Euclide và giả sử
∑m
j=1 ajαj = 0. Khi đó, với mọi i, ta có:
0 = 〈αi, 0〉 = 〈αi,
m∑
j=1
ajαj〉 =
m∑
j=1
aj〈αi, αj〉 = ai〈αi, αi〉
do đó ai〈αi, αi〉 = 0 với mọi i, vì 〈αi, αi〉 6= 0 nên ai = 0, ∀i. Vậy, hệ α1, . . . , αm là hệ
ĐLTT.
10. Chứng minh rằng: Trong không gian Euclide, ma trận đổi cơ sở giữa 2 cơ sở trực chuẩn là
ma trận trực giao.
Giải. Giả sử α1, . . . , αn (α) và β1, . . . , βn (β) là cơ sở trực chuẩn của không gian Euclide
E và giả sử:
βj =
n∑
i=1
aijαi với mọi j = 1, 2, . . . , n
7
αj =
n∑
i=1
bijβi với mọi j = 1, 2, . . . , n
Gọi T là ma trận đổi cơ sở từ (α) sang (β) thì:
T =

a11 a12 . . . a1n
a21 a22 . . . a2n
...
...
. . .
...
an1 an2 . . . ann
 và T−1 =

b11 b12 . . . b1n
b21 b22 . . . b2n
...
...
. . .
...
bn1 bn2 . . . bnn

Ta có
〈αk, βl〉 = 〈αk,
n∑
i=1
ailαi〉 =
n∑
i=1
ail〈αk, αi〉 = akl
Mặt khác
〈αk, βl〉 = 〈
n∑
i=1
bikβi, βl〉 =
n∑
i=1
bik〈βi, βl〉 = blk
Vậy blk = akl với mọi k, l, tức là T
t = T−1, do đó, T là ma trận trực giao.
11. Cho E là KGVT Euclide. Chứng minh rằng phép biến đổi tuyến tính của E, f : E → E là
phép biến đổi trực giao khi và chỉ khi f là bảo toàn độ dài của một véctơ (‖f(α)‖ = ‖α‖)
với mọi α ∈ E
Giải. Nếu f là phép biến đổi trực giao thì
∀α ∈ E, 〈f(α), f(α)〉 = 〈α, α〉
do đó ‖f(α)‖ = ‖α‖. Để chứng minh chiều ngược lại, ta có nhận xét: ∀α, β ∈ E,
〈α+ β, α+ β〉 = 〈α, α〉+ 〈β, β〉+ 2〈α, β〉
do đó
〈α, β〉 = 1
2
(‖α+ β‖2 − ‖α‖2 − ‖β‖2) (∗)
Bây giờ giả sử f bảo toàn độ dài của véctơ, khi đó, do công thức (∗), ta có
〈f(α), f(β)〉 = 1
2
(‖f(α) + f(β)‖2 − ‖f(α)‖2 − ‖f(β)‖2)
=
1
2
(‖α+ β‖2 − ‖α‖2 − ‖β‖2) = 〈α, β〉
Vậy, f là phép biến đổi trực giao.
1
1Đánh máy: LÂM HỮU PHƯỚC, Ngày: 27/02/2006
8

File đính kèm:

  • pdftai_lieu_dai_so_tuyen_tinh_my_vinh_quang.pdf
Ebook liên quan