Tài liệu Toán cao cấp - Hoàng Xuân Quảng (Phần 2)

Tóm tắt Tài liệu Toán cao cấp - Hoàng Xuân Quảng (Phần 2): ... và phép nhân đa thức với số thông thường là một không gian vectơ. 2. Sự phụ thuộc tuyến tính Hệ phần tử v1, v2, , vk trong không gian vectơ L được gọi là phụ thuộc tuyến tính nếu tồn tại các số λ1, λ2, λk không đồng thời bằng không sao cho: λ1v1 + λ2v2 + + λkvk = 0 Nếu đẳng thức trên c...ian véc tơ con của Rn. Chứng minh: Giả sử tập nghiệm của phương trình (3) là M. Ta có 0 M. Nếu X, M R và λ R thì: A(X+ λY) = AX + λAY = 0 Do đó X + λY M. Vậy M là không gian véc tơ con. 3. Định lý Kronecker – Capelli Định lý 2 (Kronecker – Capelli): Hệ phương trình tuyến tính (1) có nghi...tìm vectơ riêng ứng với λ = -2 ta lập hệ Hệ có nghiệm là (28c, 44c, 9c), với c tùy ý. Do đó vectơ riêng của ma trận A ứng với λ = -2 là: (28c, 44c, 9c), c ≠ 0 và vectơ riêng của f ứng với λ = -2 là c (28v1+ 44v2 + 9v3) Nếu cho cụ thể chẳng hạn v1=(1,1,1), v2= (0,1,1), v3 =(0,0,1) thì vectơ r...

pdf29 trang | Chia sẻ: havih72 | Lượt xem: 326 | Lượt tải: 0download
Nội dung tài liệu Tài liệu Toán cao cấp - Hoàng Xuân Quảng (Phần 2), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
n tử của L là một quy tắc đặt mỗi λ R, x L với một phần tử 
duy nhất λx L. 
Tập L cùng với hai phép toán cộng và nhân với số được gọi là một không gian 
vectơ hay không gian tuyến tính nếu với mọi x, y, z L và mọi λ, µ R thỏa 
mãn: 
1. x + (y + z) = (x + y) + z 
2. x + y = y + x 
3. 
4. 
5. 1.x = x 
6. (λ + µ)x = λ x + µ x 
7. λ (x + y) = λ x + λ y 
8. λ (µ x) = (λ µ)x 
Dễ dàng chứng minh rằng phần tử 0 trong (iii) là duy nhất, phần tử đối –x trong 
tính chất (iv) cũng duy nhất và –x = (-1)x. 
Khi L là một không gian vectơ thì các phần tử của nó gọi là các vectơ. 
Ví dụ: 
a) Theo định lý 1, không gian vectơ n – chiều Rn là một không gian vectơ. 
b) Theo định lý 1 chương 2, tập Mmxn tất cả các ma trận cấp m x n với phép 
cộng và phép nhân ma trận với số là một không gian vectơ. 
c) Tập các đa thức với phép cộng và phép nhân đa thức với số thông thường là 
một không gian vectơ. 
2. Sự phụ thuộc tuyến tính 
Hệ phần tử v1, v2, , vk trong không gian vectơ L được gọi là phụ thuộc tuyến 
tính nếu tồn tại các số λ1, λ2,  λk không đồng thời bằng không sao cho: 
λ1v1 + λ2v2 + + λkvk = 0 
Nếu đẳng thức trên chỉ xảy ra khi λ1 = λ2 = = λk thì hệ được gọi là độc lập 
tuyến tính. 
3. Cơ sở và tọa độ 
Cho L là một không gian vectơ. 
Nếu tồn tại số n sao cho mọi hệ độc lập tuyến tính của L chỉ có nhiều nhất là n 
phần tử thì L được gọi là không gian vectơ (hữu hạn) n – chiều. Ký hiệu: dim L 
= n 
Nếu L = {0} thì ta gọi L là không gian không chiều. 
Ký hiệu: dim L = 0 
Trường hợp mọi số tự nhiên n đều tìm được một hệ độc lập tuyến tính trong L 
có n phần tử thì L được gọi là vô hạn chiều. 
Ví dụ: 
a) Không gian Rn là hữu hạn n – chiều. 
b) Không gian, Mmxn là m x n – chiều. 
c) Không gian vectơ các đa thức là vô hạn chiều, vì mọi n, hệ các đa thức 1, x, 
, xn-1 là độc lập tuyến tính. 
Cho L là một không gian vectơ n – chiều. Khi đó mỗi hệ độc lập tuyến tính gồm 
n phần tử của L được gọi là một cơ sở của L. 
Xét hệ vectơ: V = {v1, v2 ,, vn} của L 
Định lý 4: Hệ V là cơ sở của L nếu và chỉ nếu mọi vectơ x L, toàn tại duy nhất 
bộ số (λ1, λ2, , λn) sao cho 
x = λ1v1 + λ2v2 + + λnvn (5) 
Nếu V là cơ sở thì bộ số (λ1, λ2, , λn) gọi là tọa độ của x trong cơ sở V, ký hiệu 
là 
hoặc là 
Nhận xét: V là cơ sở của L nếu V độc lập tuyến tính và với mọi x L có biểu 
diễn (5). 
4. Biến đổi tuyến tính 
Cho hai không gian vectơ L, M. Một ánh xạ f : L → M được gọi là ánh xạ tuyến 
tính nếu: 
ƒ(v + ω) = ƒ(v) + ƒ(ω) với mọi v, ω L 
ƒ(λv) = λƒ(v) với mọi λ R, v L 
• Nếu M = R thì ánh xạ tuyến tính f : L → R được gọi là dạng tuyến tính trên 
L. 
• Nếu M = L thì ánh xạ tuyến tính f : L → L được gọi là phép biến đổi tuyến 
tính trên L. 
Cho phép biến đổi tuyến tính f : L → L và cơ sở V = { v1, v2, , vn} của L. 
Với mỗi j đặt: 
ta được ma trận: 
gọi ma trận của phép biến đổi tuyến tính f trong cơ sở V. 
Tương tự công thức (4) ta có: 
[f(x)]v = A[x]v 
Ví dụ: Gọi L là tập các đa thức bậc ≤ 3. Khi đó L là không gian vectơ 4 – chiều 
với phép tính cộng và nhân đa thức với số thông thường. 
Xét phép biến đổi: 
(đạo hàm của P) 
Dễ dàng kiểm tra f là phép biến đổi tuyến tính trên L. 
Với cơ sở V={1, x, x2, x3} của L ta có 
Do đó ma trận của f trong cơ sở V là: 
Nhận xét: Cho không gian vectơ n-chiều L có cơ sở V={v1,v2,...,vn} và ánh xạ 
f : L |→ Rn 
x |→ x/V 
Dễ dàng kiểm tra f là ánh xạ tuyến tính và song ánh. Ta nói rằng L và Rn đẳng 
cấu tuyến tính với nhau. Do tính chất này, L có tất cả các khái niệm và tính chất 
tương tự như trong Rn, ở trên ta chỉ đưa ra một vài khái niệm và tính chất. 
5. Không gian vectơ con 
Cho L là một không gian vectơ. Tập con M L được gọi là một không gian 
vectơ con của L nếu 0 M và với các phép toán trong L, M cũng là không gian 
vectơ. 
Từ định nghĩa ta thấy ngay L và 0 ≡ {0} là những không gian vectơ con của L, 
gọi là không gian con tầm thường. Không gian vectơ con thường gọi vắn tắt là 
không gian con. 
Định lý 5: Tập con M của không gian vectơ L là không gian vectơ con của L 
nếu và chỉ nếu nó thỏa mãn một trong hai điều kiện tương đương sau đây: 
(i) M ≠ Ø và x + y M với mọi x, y M; λ x M với mọi λ R, x M 
(ii) 0 M và x + λ y M với mọi x, y M, λ R. 
Ví dụ: 
a) Ký hiệu L là không gian vectơ tất cả các hàm xác định [a,b] với phép cộng và 
phép nhân hàm với số thông thường, L1 là tập các hàm khả tích, L2 là tập các 
hàm liên tục L3 là tập các hàm khả vi trên [a,b]. 
Ta có: 
• L1, L2, L3 là không gian vectơ con của L; 
• L2, L3 là không gian vectơ con của L1; 
• L3 là không gian vectơ con của L2. 
b) Trong Rn xét hệ vectơ {v1, v2, , vk} 
Ký hiệu 
là tập tất cả các tổ hợp tuyến tính của v1, v2, , vk. Ta có L là không gian vectơ 
con của Rn và 
dim 
gọi là không gian con sinh bởi v1, v2, , vk. 
c) Trong R3 xét: 
M = {(x1, x2, x3)| x1 - 2x2 + x3 = 0 } 
M là không gian vectơ con của R3. 
Thật vậy, vì 0 – 2.0 + 0 = 0 nên 0 = (0,0,0) M. 
x = (x1, x2, x3) M, y = (y1, y2, y3) M và λ R, ta có 
x + λy = (x1 + λy1, x2 + λy2, x3 + λy3) 
Vì (x1 + λy1) – 2(x2 + λy2) + (x3 + λy3) 
= (x1 - 2x2 + x3) + λ (y1 – 2y2 + y3) = 0 
nên ta cũng có: 
x + λy M 
Chương IV. Hệ phương trình tuyến tính 
Các khái niệm 
1. Hệ phương trình tuyến tính 
Hệ phương trình tuyến tính m phương trình, n ẩn số là hệ phương trình có 
dạng: 
(1) 
Trong đó các aij, bi, i=1, ... m; j=1, ..., n là các hệ số xj, j= 1, ..., n là các ẩn số. 
Bộ số được gọi là một nghiệm của hệ (1) nếu thay các xi vào 
vị trí của xj trong hệ (1) ta được m đẳng thức đúng. 
Mỗi nghiệm của hệ (1) là một véc tơ của Rn, tập tất cả các nghiệm của hệ (1) là 
tập con của Rn. 
Giải hệ phương trình là tìm tất cả các nghiệm của hệ. 
Đặt: 
và gọi A là ma trận các hệ số, B là cột các hệ số tự do. Hệ phương trình (1) có 
thể viết dươí dạng ma trận 
AX = B (2) 
Ta gọi: là ma trận các hệ số bổ sung. Hệ (1) 
hoàn toàn được xác định khi biết ma trận các hệ số bổ sung của nó. 
2. Hệ phương trình thuần nhất 
Hệ phương trình tuyến tính (1) được gọi là thuần nhất nếu tất cả các hệ số tự 
do bằng không. Dưới dạng ma trận hệ phương trình tuyến tính thuần nhất trở 
thành 
AX = 0 (3) 
Hệ phương trình thuần nhất luôn có ít nhất một nghiệm, đó là X = 0, gọi là 
nghiệm tầm thường. 
Định lý 1: Tập hợp nghiệm của hệ phương trình tuyến tính thuần nhất là một 
không gian véc tơ con của Rn. 
Chứng minh: Giả sử tập nghiệm của phương trình (3) là M. Ta có 0 M. Nếu X, 
M R và λ R thì: 
A(X+ λY) = AX + λAY = 0 
Do đó X + λY M. Vậy M là không gian véc tơ con. 
3. Định lý Kronecker – Capelli 
Định lý 2 (Kronecker – Capelli): Hệ phương trình tuyến tính (1) có nghiệm nếu 
và chỉ nếu 
rank A = rank Ā = r 
• Nếu r = n thì hệ có một nghiệm duy nhất. 
• Nếu r < n thì hệ có vô số nghiệm phụ thuộc n – r tham số. 
Ví dụ: 
a) Hệ phương trình tuyến tính (1) luôn có nghiệm nếu 
rank A = m (số phương trình của hệ) 
Thật vậy, rank A ≤ rank Ā = m, do đó từ điều trên ta có rank A = rank Ā, nghĩa là 
hệ có nghiệm. 
b) Hệ thuần nhất có nghiệm không tầm thường nếu và chỉ nếu rank A < n. 
c)Hệ phương trình có rank A = 2, rank Ā = 3 vì vậy hệ 
vô nghiệm. 
d) Hệ phương trình có rank A = rank Ā = 2 < 
4, do dó hệ có vô số nghiệm phụ thuộc 2 tham số. 
Phương pháp giải hệ phương trình tuyến tính 
1. Phương pháp ma trận đảo 
Xét hệ phương trình dưới dạng (2): AX = B 
Nếu A là ma trận vuông khả đảo thì A-1 (AX) = A-1 B, do đó 
X= A-1 B 
Vậy nghiệm có hệ duy nhất A-1 B 
Ví dụ: Giải hệ phương trình 
Ta có 
Do đó nghiệm của hệ là 
Vậy hệ có nghiệm duy nhất: 
2. Phương pháp Cramer 
Hệ phương trình tuyến tính gọi là hệ Cramer nếu nó có số phương trình bằng số 
ẩn và det A ≠ 0 
Nếu hệ là Cramer thì ta đặt ∆ = det A trong đó ∆j là định thức của ma trận được 
nhận từ A bằng cách thay cột thứ j bởi cột hệ số tự do. 
Định lý 3 (Cramer): Hệ Cramer có một nghiệm duy nhất là: 
Ví dụ: Giải hệ phương trình: 
Ta có 
Do đó hệ có nghiệm duy nhất là (7/ 2, 2, 5/ 2) 
3. Phương pháp Gauss 
Xét ma trận hệ số bổ sung Ā của hệ (1) 
Các phép biến đổi sơ cấp trên các dòng của ma trận Ā đưa Ā thành ma trận hệ 
số của một hệ phương trình tuyến tính mới tương đương với hệ phương trình 
xuất phát. 
Phương pháp dùng phép biến đổi sơ cấp đưa Ā về dạng bậc thang, để đưa hệ 
đã cho về dạng bậc thang để giải, gọi là phương pháp Gauss. 
Ví dụ: 
a) Giải hệ: 
Ta có 
Hệ đã cho tương đương với hệ 
Vậy hệ có nghiệm duy nhất (-40, 15, 11) 
b) Giải hệ 
Ta có 
Hệ đã cho tương đương với hệ 
Vì phương trình thứ ba vô nghiệm nên hệ vô nghiệm. 
c) Giải hệ 
Ta có 
Hệ đã cho tương đương với 
Hệ đã cho có vô số nghiệm dạng (-2x2 - 2x4 +4, x2 , - x4 + 2, x4) trong đó x2, x4 
tuỳ ý thuộc R. 
4. Vài ví dụ ứng dụng 
a) Tìm tọa độ của một hệ vectơ trong một cơ sở 
Ví dụ: Tìm tọa độ của vectơ v = (1, 2, -1) trong cơ sở V = {(1, 1 , -1), (2,1, 1), 
(1,-2, 2)} 
Đặt: x1 (1, 1, -1) + x2 (2, 1, 1) + x3 (1, -2 , 2) = ( 1, 2, -1) 
ta được hệ phương trình tuyến tính 
Hệ này có nghiệm , đó chính là tọa độ của vectơ v trong cơ sở V. 
b) Tìm ma trận của một ánh xạ tuyến tính 
Ví dụ: Tìm ma trận của phép biến đổi tuyến tính f: R3 → R3 
f(x1, x2, x3)= ( 2x1 - x2, 2x2 - x3, 2x3 - x1) 
trong cơ sở v1 = (1, 1 , 1), v2 =(0, 1 , 1) , v3 =(0, 0 , 1) 
Ta có: f(v1) = (1, 1, 1) = 1.v1 + 0.v2 + 0. v3 
f(v1) = (-1, 1, 2) 
Đặt x1v1 + x2v2 +x3v3 = (-1, 1, 2), ta có hệ 
do đó f (v2 ) = -1. v1 + 2. v2 + 1. v3 
Tương tự 
f (v3 ) = (0, -1, 2) =0. v1 -1. v2 + 3. v3 
Từ đó ma trận của phép biến đổi tuyến tính trong cơ sở V là 
Chương V. Dạng song tuyến tính - Dạng toàn phương 
Giá trị riêng, vectơ riêng 
1. Định nghĩa 
Cho phép đổi tuyến tính f : Rn → Rn 
Số λ được gọi là một giá trị riêng của f nếu tồn tại một vectơ x ≠ 0 sao cho 
f(x) = λx (1) 
Vectơ x thỏa (1) được gọi là vectơ riêng của f tương ứng với giá trị riêng λ. 
Ký hiệu: Sλ là tập tất cả các vectơ riêng của f tương ứng với giá trị riêng λ cùng 
với vectơ 0. 
Định lý 1: Sλ là một không gian vectơ con của Rn và 
Chứng minh: Ta có 0 Sλ . Nếu x, y Sλ và a R thì 
f (x+ay) = f(x) + a f(y) = λ x + a λ y = λ (x+ay) 
nghĩa là x+ay Sλ. Vậy Sλ là không gian vectơ con. 
Mặt khác nếu x Sλ thì f(x) = λx Sλ do đó f (Sλ) Sλ 
Do bao hàm thức f(Sλ) Sλ, người ta nói Sλ là một không gian con bất biến của 
f. 
2. Phương trình đặc trưng 
Giả sử A là ma trận của phép biến đổi tuyến tính f trong một cơ sở V. Khi đó: 
[f(x)]V =A[x]V 
Ta cũng có [λx]V = λ I [x]V 
do đó f(x) = λ x ↔ A [x]V = λ I [x]V 
và cuối cùng ( A – λ I ) [x]V = 0 (2) 
Đẳng thức (2) là một hệ phương trình tuyến tính thuần nhất dưới dạng ma trận. 
λ là giá trị riêng ↔ (2) có nghiệm không tầm thường ↔ rank (A – λI) < n ↔ det 
(A – λI) =0 
Đặt: (3) 
PA(λ) là một đa thức bậc n của λ, gọi là đa thức đặc trưng của ma trận A và 
cũng gọi là đa thức đặc trưng của phép biến đổi tuyến tính f. Các giá trị riêng 
của f cũng gọi là giá trị riêng của ma trận A. 
Bằng cách giải phương trình đặc trưng PA(λ) = 0 
Ta tìm được các giá trị riêng của f (có nhiều nhất là n giá trị riêng). Thay các giá 
trị riêng tìm được vào phương trình (2), ta tìm được tọa độ của các vectơ riêng 
trong cơ sở đang xét. Ta gọi các nghiệm không tầm thường của (2) là các vectơ 
riêng của ma trận A ứng với giá trị riêng λ. Như vậy vectơ riêng của ma trận A là 
tọa độ của vectơ riêng của f trong cơ sở đang xét. Trường hợp cơ sở là chính 
tắc thì chúng trùng nhau. 
Ví dụ: Cho phép biến đổi tuyến tính f trong cơ sở R3 có ma trận trong cơ sở V = 
{v1, v2, v3} là 
Hãy tìm giá trị riêng và vectơ riêng của f. 
Đa thức đặc trưng của A là: 
Do đó f có giá trị riêng là 1 (bội 2) và –2 
Để tìm vectơ riêng ứng với giá trị riêng λ =1, ta lập hệ 
↔ 
Giải hệ này ta được nghiệm (2c, c, 0) , c tùy ý. 
Do đó vectơ riêng của ma trận A ứng với λ = 1 là c(2v1+v2) , c ≠ 0 
Để tìm vectơ riêng ứng với λ = -2 ta lập hệ 
Hệ có nghiệm là (28c, 44c, 9c), với c tùy ý. Do đó vectơ riêng của ma trận A 
ứng với λ = -2 là: (28c, 44c, 9c), c ≠ 0 và vectơ riêng của f ứng với λ = -2 là 
c (28v1+ 44v2 + 9v3) 
Nếu cho cụ thể chẳng hạn v1=(1,1,1), v2= (0,1,1), v3 =(0,0,1) thì vectơ riêng của 
f 
• ứng với λ = 1 là x = c(2, 3, 3), c ≠ 0; 
• ứng với λ = -2 là x = c( 28, 72, 81), c ≠ 0 
3. Giá trị riêng của ma trận đồng dạng 
Hai ma trận vuông cấp n A và B được gọi là đồng dạng với nhau nếu tồn tại ma 
trận T không suy biến sao cho. 
B = T–1AT 
Định lý 2: Các ma trận của một phép biến đổi tuyến tính f trong các cơ sở khác 
nhau là đồng dạng với nhau. 
Chứng minh: Giả sử B là ma trận của f trong cơ sở W. Ta cần chứng minh A 
đồng dạng với B. (A là ma trận của f trong cơ sở V) 
Theo (4) trong chương 3, ta có. 
[f(x)]V = A[x]V; [f(x)]W = B[x]W; [x]V = T[x]W 
Gọi T là ma trận từ V sang W. Theo (3) chương 3, ta có 
[f(x)]W = T-1[f(x)]V = T-1A [x]V 
= (T-1A) (T[x]W) = (T-1 AT) [x]W 
Vì ma trận của f trong cơ sở W là duy nhất nên 
B = T-1AT (4) 
nghĩa là A và B đồng dạng nhau. 
Định lý 3: Các ma trận đồng dạng có cùng đa thức đặc trưng. 
Chứng minh: Giả sử B= T-1AT. Khi đó 
PB(λ ) = det (B –λ I) = det (T-1AT – T-1λ IT) 
= det [ T-1(A - λ I) T] = det T-1 det (A – λ I) det T 
= det (A – λ I) = PA (λ) 
Từ định lý 2 và 3 ta thấy rằng đa thức đặc trưng của một phép biến đổi tuyến 
tính là duy nhất. 
Chéo hóa ma trận 
1. Định nghĩa 
Ma trận vuông A gọi là có dạng chéo nếu tất cả các phần tử không nằm trên 
đường chéo chính của nó đều bằng không, nghĩa là 
(A)ij =0 với mọi i ≠ j, i, j =1, ... , n 
Ma trận vuông A gọi là chéo hóa được nếu tồn tại một ma trận vuông không suy 
biến T sao cho T-1AT là ma trận chéo. 
2. Điều kiện để một ma trận chéo hóa được 
Định lý 4: Ma trận vuông A cấp n chéo hóa được nếu và chỉ nếu A có n vectơ 
riêng độc lập tuyến tính trong Rn. 
Nếu λ là giá trị riêng đơn thì ứng với nó chỉ có duy nhất một vectơ riêng độc lập 
tuyến tính. Nếu λ là giá trị riêng bội m thì ứng với nó có số vectơ riêng độc lập ≤ 
m. 
Dựa vào định lý 4 ta có kết quả như sau: 
Định lý 4’: M trận vuông A cấp n chéo hóa được nếu và chỉ nếu A có n giá trị 
riêng (kể cả số lần bội) và ứng với vectơ riêng bội m có m vectơ riêng độc lập 
tuyến tính. 
Ví dụ: Cho ma trận 
Chứng tỏ A chéo hóa được. Tìm ma trận khả đảo T sao cho A =TBT-1 với B là 
ma trận chéo. 
Ta có 
PA(λ) = 0 ↔ λ = 1, 3, -4 
Với λ = 1, vectơ riêng tương ứng là v = c(1,0,3), c ≠ 0, ta chọn v1 = (1,0,3) 
Với λ = 3, vectơ riêng tương ứng là v = c(-3,-2,1), c ≠ 0, ta chọn v2 = (-3,-2,1) 
Với λ = -4, vectơ riêng tương ứng là v = c(-3,5,1), c ≠ 0, ta chọn v3 = (-3,5,1) 
Ta được cơ sở V = {v1,v2,v3} của R3 (V chọn bằng phương pháp trên luôn là cơ 
sở, nhưng ta không đi sâu vào vấn đề này). 
Theo chứng minh định lý 4, với 
thì B = T-1AT hay A = TBT-1 trong đó B là ma trận chéo. 
3. Chéo hóa ma trận đối xứng 
Ma trận vuông A gọi là đối xứng nếu AT = A. 
Ma trận vuông A gọi là trực giao nếu ATA = A AT = I, nói cách khác, A là trực 
giao nếu AT = A-1. 
Định lý 5: Mọi ma trận đối xứng A đều chéo hóa được, hơn nữa luôn có thể tìm 
được ma trận trực giao T sao cho TTAT là có dạng chéo. 
Cho x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) là các vectơ trong Rn. Ta gọi tích vô 
hướng của x và y là 
= x1y1 + x2y2 + ... + xnyn 
x và y gọi là trực giao (hay vuông góc) nếu = 0. Ta gọi môđun của x là 
Một cơ sở của Rn được gọi là cơ sở trực chuẩn nếu các vectơ trong cơ sở có 
môđun bằng 1 và đôi một vuông góc nhau. 
Nếu A là đối xứng thì có thể tìm được một cơ sở trực chuẩn của Rn gồm các 
vectơ riêng của A với cơ sở này, ma trận T nói trong định lý 4 là trực giao. 
Ví dụ: Chéo hóa ma trận đối xứng 
Ta có 
Vì vậy A có giá trị riêng là –1 (bội) và 2. 
Với trị riêng 2, ta có vectơ riêng là (c, c, c), c ≠ 0 ta chọn vectơ có môđun bằng 1 
là 
Với trị riêng –1 ta có vectơ riêng là (c1, c2, -c1 –c2), c1, c2 không đồng thời bằng 
0. Ta có thể chọn 2 vectơ riêng vuông góc là (1, 0 ,-1), (1, -2, 1). Vì vậy ta có hai 
vectơ trực giao có môđun 1 là 
Ta có {v1, v2, v3} là cơ sở trực chuẩn. Với 
thì T-1 = TT và 
là ma trận chéo 
4. Tính lũy thừa ma trận 
Cho ma trận A chéo hóa được, khi đó tồn tại ma trận vuông T sao cho A = TBT-1 
với 
là ma trận chéo. Dễ dàng thấy rằng 
do đó ta tính được An một cách khá đơn giản. 
Ví dụ: Tính 
Đặt 
A có 2 giá trị riêng là 1, -3 với các vectơ riêng độc lập tương ứng là (1 , 0) và (1 
, -2). 
Ta có và 
Từ đó 
5. Ma trận xác định dương 
Ma trận đối xứng được gọi là xác định dương nếu 
∆1 = a11 > 0 
∆n = det A > 0 
Ví dụ: Ma trận đối xứng 
Có 17 > 0, , det A = 2187 >0, do đó xác định dương. 
Dạng song tuyến tính - Dạng toàn phương 
1. Dạng song tuyến tính 
Một ánh xạ f: Rn x Rn → R được gọi là một dạng song tuyến tính trên Rn nếu với 
mọi x, y, z Rn , λ R ta có 
1. f(x+z, y) = f(x, y) + f(z, y) 
f(λ x, y) = λ f(x,y) 
2. f(x, y+z) = f(x, y) + f (x,z) 
f(x, λ y) = λ f(x,y) 
Như vậy f(x,y) là một dạng song tuyến tính f trên Rn nếu với mọi y cố định f là 
một dạng tuyến tính trên Rn theo biến x, và với mỗi x cố định f là một dạng tuyến 
tính trên Rn theo biến y. 
Cho một dạng song tuyến tính f trên Rn và xét một cơ sở V={v1, v2, ..., vn} của 
Rn. 
Đặt f(vi, vj) = aij. Khi đó ta được ma trận 
Ta gọi A là ma trận của dạng song tuyến tính f. 
Ký hiệu [x]v, [y]v là tọa độ của x và y trong cơ sở V, ta có 
Vì vậy 
Ví dụ: 
Cho f(x,y) = x1y1 - 2x1 y2 +3x2 y1 - 4x2 y2 
với mọi x = (x1, x2), y = (y1, y2) là một dạng song tuyến tính trên R2. 
Trong cơ sở chính tắc ε1 = (1,0), ε2= (0,1) ta có f(ε1, ε1) = 1, f(ε1, ε2) = -2, f(e2, e1) 
= 3, 
f(ε2, ε2) = -4. Do đó ma trận của f trong cở sở chính tắc là 
và ta có thể viết 
Một dạng song tuyến tính f(x,y) trên Rn gọi là đối xứng nếu 
f(x,y) = f(y,x) với mọi x,y Rn 
Ta có tính chất sau đây 
Định lý 1: Dạng song tuyến tính là đối xứng nếu và chỉ nếu ma trận của nó 
trong cơ sở bất kỳ là đối xứng. 
2. Dạng toàn phương 
Cho f(x,y) là một dạng song tuyến tính đối xứng trên Rn. Khi đó 
ω(x) = f( x, x) 
gọi là một dạng toàn phương trên Rn 
Ma trận của dạng song tuyến tính f cũng là ma trận của dạng toàn phương ω. 
Vậy ma trận của dạng toàn phương là một ma trận đối xứng. 
Ví dụ: a) Trên R3 
f(x,y) = x1y1- x1y2 -x2y1 + x2y3 + x3y2 + x3y3 
là dạng song tuyến tính, có ma trận trong cơ sở chính tắc là 
vì A là đối xứng nên f là dạng song tuyến tính đối xứng. 
Từ đó là một dạng toàn phương 
b) Cho dạng toàn phương trên R3. 
Ta có 
do đó ma trận ω(x) là 
Dạng toàn phương ω(x) gọi là xác định dương nếu ω(x) >0 với mọi x ≠ 0, gọi là 
bán xác định dương nếu ω(x) ≥ 0 với mọi x. Đổi chiều bất đẳng thức, ta có khái 
niệm xác định âm và bán xác định âm. Nếu ω(x) có dấu thay đổi thì ta nói nó 
không xác định. 
3. Dạng chính tắc của dạng toàn phương 
Dạng toàn phương gọi là có dạng chính tắc. 
Cơ sở của Rn để xác định ω(x) có dạng chính tắc gọi là cơ sở chính tắc của 
dạng toàn phương. 
Nếu ω(x) có dạng chính tắc thì ta thấy ngay 
• ω(x) xác định dương nếu mọi bi > 0 
• bán xác định dương nếu mọi bi ≥ 0 
• xác định âm nếu mọi bi < 0 
• bán xác định âm nếu mọi bi ≤ 0 
• không xác định nếu có các bi trái dấu 
Để xét tính xác định của một dạng toàn phương bấy kỳ, ta tìm cách đưa nó về 
dạng chính tắc, khi đó ta kết luận theo cách trên. 
4. Phương pháp đưa dạng toàn phương về dạng chính tắc 
Phương pháp Lagrange: 
Nếu trong dạng toàn phương ω(x) có a11 ≠ 0 thì ta viết 
Đặt 
Với j = 2, ... , n ta có 
trong đó g1 là một dạng toàn phương không chứa x1 
Nếu a11= 0 nhưng a12 ≠ 0 thì đặt 
• x1 = x’1 + x’2 
• x2 = x’1 - x’2 
Khi đó . Theo trường hợp a11 ≠ 0 ta cũng có 
với g1 là dạng toàn phương không chứa x1. Tiếp tục quá trình 
này, ta sẽ đưa được ω(x) về dạng 
Ví dụ: 
Ta có 
Đặt ta có 
Ta cũng có kết luận ω(x) xác định dương ↔ a > 0 và ac-b > 0. 
Phương pháp Jacobi 
Giả sử dạng toàn phương ω(x) có ma trận là 
Đặt 
Khi đó nếu mọi ∆i ≠ 0 thì tồn tại một cơ sở để ω(x) có thể viết dưới dạng 
Ví dụ: Có dạng toàn phương 
có ma trận là 
Ta có ∆1 =1, ∆2 = -1, ∆3 = -2, do đó trong một cơ sở nào đó, ω(x) có dạng 

File đính kèm:

  • pdftai_lieu_toan_cao_cap_hoang_xuan_quang_phan_2.pdf
Ebook liên quan