Bài giảng Thủy lực môi trường - Chương 3: Cơ sở động lực học chất lỏng
Tóm tắt Bài giảng Thủy lực môi trường - Chương 3: Cơ sở động lực học chất lỏng: ... cong khi các đường dòng không song song (c-c, d-d). 43.5. Những yếu tố thủy lực của dòng chảy b. Chu vi ướt: Là phần chiều dài của phần tiếp xúc giữa chất lỏng và thành rắn trên mặt cắt ướt, ký hiệu: χ, m. CDBCAB d c. Bán kính thủy lực: Ký hiệu: R, m. R Lưu lượng dòng ...n tử chất lỏng ở mặt cắt 1-1 di chuyển đến 1’-1’ với độ dài ∆S1 = u1.∆t và các phân tử ở mặt cắt 2-2 di chuyển đến 2’-2’ với dộ dài ∆S2 = u2.∆t. →Lưu lượng qua 1-1 & 2-2: dQ = u1dω1 = u2dω2 63.7. Phương trình Becnuli của dòng nguyên tố chất lỏng lý tưởng, chảy ổn định Giữa 1-1&2’-2’ chia l...g tổng cột nước với độ dài của đoạn dòng nguyên tố, trên đó thể hiện độ dốc hạ thấp. Nếu đường cột nước là đường cong →độ dốc các mặt cắt ướt không bằng nhau → dùng đạo hàm để biểu thị J’ của từngmặt cắt đó. dl dh dl g uPzd dl dHJ w ' 2 2 ' 3.1...
1Chương 3: Cơ sở động lực học chất lỏng NỘI DUNG CHƯƠNG 3 3.1. Khái niệm chung 3.2. Chuyển động không ổn định và chuyển động ổn định 3.3. Quỹ đạo – đường dòng 3.4. Dòng nguyên tố - dòng chảy 3.5. Những yếu tố thủy lực của dòng chảy ổn định 3.6. Phương trình thủy lực của dòng chảy ổn định 3.7. Phương trình Becnuli của dòng nguyên tố chất lỏng lý tưởng NỘI DUNG CHƯƠNG 3 3.8. Phương trình Becnuli của dòng nguyên tố chất lỏng thực chảy ổn định 3.9. Ý nghĩa năng lượng và thủy lực của phương trình Becnuli viết cho dòng nguyên tố chảy ổn định 3.10. Độ dốc thủy lực và độ dốc đo áp của dòng nguyên tố 3.11. Pt Becnuli của toàn dòng chất lỏng thực chảy ổn định (có kích thước hữu hạn) 3.12. Ứng dụng của phương trình Becnuli trong việc đo lưu tốc và lưu lượng 3.13.Phân loại dòng chảy 3.1. Khái niệm chung Động lực học chất lỏng nghiên cứu những quy luật chung về chuyển động của chất lỏng, không xét đến lực tác dụng → phương trình động học là chung cho cả chất lỏng lý tưởng và thực. Chất lỏng chuyển động liên tục, gồm các phần tử vô cùng nhỏ chuyển động, mỗi phần tử đặc trưng bởi những đại lượng cơ bản của sự chuyển động → những yếu tố chuyển động (áp suất thủy động (p); vận tốc (u); gia tốc của phần tử chất lỏng (a). 23.1. Khái niệm chung a. Áp suất thủy động (p): Chất lỏng lý tưởng, p hướng vào mặt chịu lực và theo phương pháp tuyến với mặt đó → p của chất lỏng lý tưởng có tính chất giống áp suất thủy tĩnh. Chất lỏng thực, p hướng vào mặt chịu lực và không hướng theo phương pháp tuyến với mặt đó (vì p là tổng hợp của thành phần ứng suất pháp tuyến pn và thành phần ứng suất tiếp tuyến τ do tính nhớt gây ra). 3.2. Chuyển động không ổn định & chuyển động ổn định a. Chuyển động không ổn định là chuyển động mà yếu tố chuyển động phụ thuộc vào t: u = u(x,y,z,t); p = p(x,y,z,t), Hoặc: ;...0;0 dt dp dt du VD: Mực nước H trong bể chứa giảm dần → lưu tốc tại A trên dòng nước chảy sẽ giảm dần. 3.2. Chuyển động không ổn định & chuyển động ổn định b. Chuyển động ổn định là chuyển động mà các yếu tố chuyển động không biến đổi theo t: u = u(x,y,z); p = p(x,y,z), Hoặc: ;...0;0 dt dp dt du VD: Mực nước (H = const) → lưu tốc tại A trên dòng chảy không đổi. 3.2. Chuyển động không ổn định & chuyển động ổn định a. Chuyển động không ổn định u gọi là lưu tốc điểm (coi phần tử chất lỏng chiếm vị trí vô cùng nhỏ như 1 điểm). Những yếu tố chuyển động có thể thay đổi liên tục theo vị trí của phần tử và theo thời gian → chúng là hàm liên tục theo x, y, z và t (thời gian). p = p(x,y,z,t); u = u(x,y,z,t); a = a(x,y,z,t) b. Gia tốc của phần tử chất lỏng (a): 33.3. Quỹ đạo – Đường dòng Quỹ đạo: đường đi của một phần tử chất lỏng trong không gian. Đường dòng: đường cong đi qua các phần tử chất lỏng có vectơ lưu tốc là những tiếp tuyến của đường đó. Đường dòng phụ thuộc vào thời gian. Hai đường dòng không thể giao nhau hoặc cắtnhau. 3.4. Dòng nguyên tố – Đường chảy Trong dòng chất lỏng chuyển động, lấy đường cong kín, giới hạn bởi diện tích dω vô cùng nhỏ. Tập hợp tất cả đường dòng đi qua các điểm trên đường cong kín dω tạo thành mặt có dạng mặt ống → ống dòng. Khối chất lỏng chuyển động trong không gian giới hạn bởi ống dòng → dòng nguyên tố. 3.4. Dòng nguyên tố – Đường chảy Trong không gian chứa đầy dòng chất lỏng chuyển động, lấy đường cong kín, giới hạn bởi diện tích ω gồm vô số diện tích dω. → tập hợp những dòng nguyên tố đó gọi là dòng chảy. 3.5. Những yếu tố thủy lực của dòng chảy a. Mặt cắt ướt: Là mặt cắt thẳng góc với tất cả các đường dòng. Mặt cắt ướt có thể là mặt phẳng khi các đường cong là những đường song song (m-m, n-n), có thể là mặt cong khi các đường dòng không song song (c-c, d-d). 43.5. Những yếu tố thủy lực của dòng chảy b. Chu vi ướt: Là phần chiều dài của phần tiếp xúc giữa chất lỏng và thành rắn trên mặt cắt ướt, ký hiệu: χ, m. CDBCAB d c. Bán kính thủy lực: Ký hiệu: R, m. R Lưu lượng dòng nguyên tố: Lưu lượng toàn dòng: 3.5. Những yếu tố thủy lực của dòng chảy d. Lưu lượng: Là thể tích chất lỏng đi qua mặt cắt ướt trong 1 đơn vị thời gian, ký hiệu: Q, (m3/s, l/s) . uddQ uddQQ 3.5. Những yếu tố thủy lực của dòng chảy e. Lưu tốc trung bình: Là tỉ số lưu lượng Q với diện tích ướt ω, ký hiệu: v, (m/s, cm/s). Qv udv 3.6. Phương trình liên tục của dòng chảy ổn định Xét dòng nguyên tố. Lấy 2 mặt cắt A&B có diện tích dω1,dω2 và lưu tốc u1, u2. Sau thời gian dt, thể tích chất lỏng dịch chuyển đến vị trí mới là A’, B’. → thể tích khối [A,B] = thể tích khối [A’,B’] → thể tích khối [A,A’] = thể tích khối [B,B’] → u1dω1dt = u2dω2dt → u1dω1 = u2dω2 : phương trình liên tục của dòng nguyên tố. 53.6. Phương trình liên tục của dòng chảy ổn định ↔ dQ1 = dQ2 Hoặc: dQ = const Xét cho toàn dòng, khi đó (*): 21 2211 dudu 2 1 2 1 2211 ** v vuvuv Với: v1, v2 – lưu tốc trung bình quamặt cắt ướt ω1,ω2. (**): phương trình liên tục của dòng chảy ổn định của chất lỏng → dùng cho cả chất lỏng thực và chất lỏng lý tưởng. 21 QQ Hoặc: constQ 3.6. Phương trình liên tục của dòng chảy ổn định Bài tập áp dụng: Tính vận tốc trung bình của dòng chảy trong mỗi ống khi vận chuyển nước từ ống tròn có d1 = 40cm sang ống tròn có d2 = 20cm. Biết lưu lượng nước chảy qua ống là 5m3/s. smQv /, 1 1 Hướngdẫn: Ống 1: smQv /, 2 2 Ống 2: 3.7. Phương trình Becnuli của dòng nguyên tố chất lỏng lý tưởng, chảy ổn định Áp dụng định luật động năng: “Sự biến thiên động năng của 1 khối lượng nhất định khi nó di động trên quãng đường bằng công của các lực tác dụng lên khối lượng đó trên quãng đường đó” Trong khối chất lỏng lý tưởng chuyển động ổn định, lấy 1 dòng nguyên tố. Xét một đoạn dòng nguyên tố giới hạn bởi 2 mặt cắt 1-1 & 2-2 có tiết diện là dω1,dω2 Chọn mặt chuẩn là mặt phẳng nằm ngang Ox 3.7. Phương trình Becnuli của dòng nguyên tố chất lỏng lý tưởng, chảy ổn định Vì mặt cắt 1-1&2-2 vô cùng nhỏ nên coi u1, p1, u2, p2 không đổi với bất kỳ điểm nào trên mặt cắt. Sau thời gian ∆t vô cùng nhỏ, các phân tử chất lỏng ở mặt cắt 1-1 di chuyển đến 1’-1’ với độ dài ∆S1 = u1.∆t và các phân tử ở mặt cắt 2-2 di chuyển đến 2’-2’ với dộ dài ∆S2 = u2.∆t. →Lưu lượng qua 1-1 & 2-2: dQ = u1dω1 = u2dω2 63.7. Phương trình Becnuli của dòng nguyên tố chất lỏng lý tưởng, chảy ổn định Giữa 1-1&2’-2’ chia làm 3 khu vực: a, b, c. → Trong thời gian ∆t, biến thiên động năng của dòng nguyên tố đang xét: a b c )()()( ađncđnđn 2 ... 2 ...)( 2 1 2 2 utdQutdQđn 22 .. 22 ...)( 2 1 2 2 2 1 2 2 uutdQ g uutdQđn 3.7. Phương trình Becnuli của dòng nguyên tố chất lỏng lý tưởng, chảy ổn định Xét các ngoại lực tác dụng: trọng lựcvà áp lực thủyđộng. Công sinh ra bởi trọng lực của khối chất lỏng đang xét: a b c 212111 ......)( zztdQzzSdtrlC Áp lực thủy động: 21 2221112211 ..)( .....)( pptdQápC SdpSdpSPSPápC 3.7. Phương trình Becnuli của dòng nguyên tố chất lỏng lý tưởng, chảy ổn định Định luậtđộng năng: a b c )()()( ápCtrlCđn *', 2 : *, 22 ... 22 . 2 21 21 2 1 2 2 2112 2 1 2 2 const g vPzhay PPzz g u g u pptdQzztdQuutdQ g →Pt Becnuli 3.8. Phương trình Becnuli của dòng nguyên tố chất lỏng thực, chảy ổn định Do có tínhnhớt → gây sức cản trong quá trình chuyển động→ tổn thất1 phầnnănglượng. → năng lượng của 1 đơn vị trọng lượng chất lỏng thực giảm dần theochiềudài dòng chảy (E1 > E2). g uPz g uPz 22 2 22 2 2 11 1 )(*', 2 : (*), 22 2 12 2 22 2 2 11 1 consth g uPzhay h g uPz g uPz w w (hw12-tổn thất năng lượng của 1 đơn vị trọng lượng chất lỏng di chuyển từ 1-1 đến 2-2) 73.9. Ý nghĩa của phương trình Becnuli viết cho toàn dòng chất lỏng thực a. Ý nghĩa thủy lực: z – độ cao hìnhhọc,m. P/γ – độ cao đo áp, m. v2/2g – độ cao vận tốc, m. z + P/γ – cột áp tĩnh. z + P/γ+ v2/2g – cột áp thủyđộng. Mặt chuẩn 3.9. Ý nghĩa của phương trình Becnuli viết cho toàn dòng chất lỏng thực b. Ý nghĩa năng lượng: z – vị năngđơn vị. P/γ – áp năngđơn vị. z + P/γ – thếnăngđơn vị (ab). v2/2g – động năngđơnvị. z + P/γ+ v2/2g – tỷ năng toànphần (a1b1). Đường đo áp Đường tổng cột nước Mặt chuẩn 3.10. Độ dốc thủy lực và độ dốc đo áp của dòng nguyên tố a. Độ dốc thủy lực: Độ dốc thủy lực (J): tỷ số của đường tổng cột nước với độ dài của đoạn dòng nguyên tố, trên đó thể hiện độ dốc hạ thấp. Nếu đường cột nước là đường cong →độ dốc các mặt cắt ướt không bằng nhau → dùng đạo hàm để biểu thị J’ của từngmặt cắt đó. dl dh dl g uPzd dl dHJ w ' 2 2 ' 3.10. Độ dốc thủy lực và độ dốc đo áp của dòng nguyên tố a. Độ dốc thủy lực: Nếu đường cột nước là đường thẳng→độ dốc thủy lực J’: l h J w ' ' 83.10. Độ dốc thủy lực và độ dốc đo áp của dòng nguyên tố b. Độ dốc đo áp: Độ dốc đo áp (Jp’): tỷ số độ thấp xuống hoặc nâng lên của đường đo áp so với độ dài của dòng nguyên tố, trên đó thể hiện sự hạ thấp hoặc dâng cao của dòng nguyên tố. dl Pzd J p ' Nếu diện tích mặt cắt ướt dω = const→ v = const→ J’ = Jp’. r 3.11. Pt Becnuli của toàn dòng chất lỏng thực, chảy ổn định (có kích thước hữu hạn) Trong môi trường liên tục chất lỏng chuyển động là tổnghợp của vô số dòng nguyên tố. Xét trường hợp dòng chảy đổi dần là dòng ổn định có các đường dòng là các đường song song: Góc giữa các đường dòng rất nhỏ. Bán kính cong r rất lớn. →bỏ qua lực quán tính. 3.11. Pt Becnuli của toàn dòng chất lỏng thực, chảy ổn định (có kích thước hữu hạn) Theo công thức thủy tĩnh: constPz 1 1 pzpzpzpz ccbbaa Mặt cắt 1-1: 2 2 ' ' ' ' ' ' pz p zpz p z c cb a b a Mặt cắt 2-2: 2 2 1 1 p z p z Tuy nhiên: 3.11. Pt Becnuli của toàn dòng chất lỏng thực, chảy ổn định (có kích thước hữu hạn) Xét dòng chất lỏng thựcchuyểnđộng ổn định. Viết pt Becnuli cho dòng nguyên tố chất lỏng thực: Khai triển, ta được: 9→ Nước chảy trong ống: α = 1,05 – 1,10. Trong thực tế tính toán thườngcho α1 ≈ α2. )'(*', 2 : )(*', 22 2 12 2 2 2 2 2 2 1 1 1 1 consth g uPzhay h g uPz g uPz w w Với : hệ số hiệuchỉnhđộngnăng(hệsốCoriolis). 3 33 v du 3.11. Pt Becnuli của toàn dòng chất lỏng thực, chảy ổn định (có kích thước hữu hạn) 3.12. Ứng dụng của pt Becnuli a. Ống Pito: Đo vận tốc tại 1 điểm trong dòng chảy: cắm ống đo áp và ống Pito hình L (đường kính rất nhỏ và đặt rất gần nhau) vào dòng chảy: Ốngđo áp: z + P/γ. ỐngPitođo độ chênh: hgu g uh 2 2 2 3.12. Ứng dụng của pt Becnuli b. Ống ventury: Đo lưu lượng chất lỏng trong ống: 2 đoạn ống ngắn có đường kính khác nhau, trên có lắp ống đo áp. Đo độ chênh lệch mực nước ở 2 ống đo áp ta tính được lưu lượng: Với: hKQ 1 2 4 .2 4 4 2 44 42 d D gD dD dgDK 3.13. Phân loại dòng chảy a. Dòng chảy không đều và dòng chảy đều: Dòng chảy không đều: dòng chảy có đường dòng không phải là những đường song song. → những dòng nguyên tố của dòng chảy không đều không là đường song song. → mặt cắt ướt, lưu tốc ứng với trường hợp nàyở từngđiểm là khác nhau. Dòng chảy đều: dòng chảy có đường dòng là những đường song song. → những dòng nguyên tố của dòng chảy đều là đường song song. → mặt cắt ướt, lưu tốc ứngvới trườnghợpnàyở từngđiểm là nhưnhau. 10 3.13. Phân loại dòng chảy b. Dòng chảy có áp, không áp và dòng tia: Dòng chảy có áp: dòng chảy mà chu vi ướt của mặt cắt mặt cắt ướt hoàn toàn là những thành rắn cố định. → áp suất thủy động tại tất cả những của mặt cắt ướt không bằng áp suấtkhông khí. Dòng chảy không áp: dòng chảymà chu vi ướt của mặt cắt mặt cắt ướt có bộ phận là thành rắn cố định, có bộ phận tiếp xúc với không khí. → áp suất trên mặt tự do bằng áp suất khôngkhí. Dòng tia: dòng chảymà toàn bộ chu vi ướt của mặt cắt mặt cắt ướt không tiếp xúc với thành rắn, tiếp xúc hoàn toàn với khôngkhí.
File đính kèm:
- bai_giang_thuy_luc_moi_truong_chuong_3_co_so_dong_luc_hoc_ch.pdf