Bài giảng Phân tích môi trường - Hoàng Văn Hưng

Tóm tắt Bài giảng Phân tích môi trường - Hoàng Văn Hưng: ... pH xác định. Bằng cách nào đó xác định được ở thời điểm nào trong quá trình chuẩn độ pH đã đạt đến giá trị này và lúc đó ta kết thúc chuẩn độ. Muốn thế có thể dùng máy đo pH, máy đo điện thế hoặc dùng chất chỉ thị axit-bazơ (mầu chuyển đổi theo pH).(1). Chuẩn độ theo phương pháp trung hòa (chuẩn độ...biến thiên khoảng cách là ∆r, khi đó sẽ xuất hiện một lực f có khuynh hướng kéo A, B trở về vị trí cân bằng; lực f đó gọi là lực hồi phục, f tỷ lệ với ∆r và có hướng ngược chiều với chiều chuyển dịch của A,B. f = - K. ∆r, với K: gọi là hằng số lực (dyn.cm-1) Khi ∆r bé, dao động của A,B được coi là ...từng điện cực CLI Phân tích định lượng:Phương pháp đường chuẩn: Từ biểu thức trên có thể xác định được aNhưng giá trị cần tìm là C, a= f.C. Khi xây dựng đường chuẩn ta pha các dung dịch có C biết trước nên để từ a suy ra C tương ứng, phải giữ hệ số f (hệ số hoạt độ) không đổi, mà: Ci, Zi là nồng độ ...

ppt102 trang | Chia sẻ: havih72 | Lượt xem: 92 | Lượt tải: 0download
Nội dung tài liệu Bài giảng Phân tích môi trường - Hoàng Văn Hưng, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
 (Descartes) tức là có 3N bậc tự do, trong đó 3 bậc tự do mô tả chuyển động tịnh tiến và 3 bậc tự do mô tả chuyển động quay của phân tử xung quanh trục. Như vậy nói chung phân tử có N nguyên tử sẽ có 3N-6 dao động cơ bản (trong đó có N – 1 dao động hóa trị, hay dao động co dãn liên kết).Trường hợp N nguyên tử nằm trên một đường thẳng thì chỉ có 2 bậc tự do xác định trạng thái quay của phân tử, nên số dao động cơ bản sẽ là 3N – 5. Ví dụ phân tử nước (H2O) có 3 nguyên tử không thẳng hàng sẽ có 3x3-6 = 3 dao động cơ bản.+ Tuy nhiên trong các phân tử nhiều nguyên tử số kiểu dao động thực tế có thể tăng hoặc giảm nhiều so với số dao động cơ bản do nhiều lý do khác nhau, ví dụ sự xuất hiện các “bội âm”, “tổ hợp âm” (do các dao động tương tác với nhau) hoặc không xuất hiện trên phổ do dao động không làm thay đổi momen lưỡng cực, hoặc những dao động cơ bản có cùng tần số (dao động suy biến) ...Phổ dao động và cấu tạo phân tử: Các kiểu dao động và tần số dao động liên quan đến cấu trúc phân tử. Ví dụ: Từ 4000 – 2500 cm-1: sự hấp thụ đặc trưng cho dao động co dãn của nguyên tử H với các nguyên tử có khối lượng ≤19. Ví dụ liên kết C – H trong – C ≡ C – H tần số dao động co dãn liên kết xuất hiện ở 3300 cm-1, trong hợp chất vòng thơm và chưa no ở khoảng 3000 – 3100 cm-1. Vùng tần số trung gian 2500 – 1540 cm-1 thường là “vùng chưa no”. Ví dụ: Liên kết ≡ có đám phổ hấp thụ ở 2500 – 2000 cm-1, Liên kết = có đám phổ hấp thụ ở 2000 – 1540 cm-1. Tần số dao động của nhóm nguyên tử nào đó trong phân tử ít phụ thuộc vào phần còn lại được gọi là tần số đặc trưng cho nhóm đó và thường dùng để phát hiện các nhóm chức trong phân tử. Tần số đặc trưng của nhóm ít thay đổi thì không có nghĩa là λmax hấp thụ không đổi mà là λmax dao động trong một vùng phổ khá hẹp, vì thực ra tần số đặc trưng cũng chịu nhiều ảnh hưởng khác như thay đổi trạng thái (khí, lỏng), ảnh hưởng của dung môi, tương tác giữa các phân tử NhómTần số cm-1NhómTần số cm-1O-H3650-3250CC2200N-H3500-2900C=O1850-1650C-H3300-2700C=C1650S-H2550C-O-1300-1000Bảng tần số dao động hóa trị của một số nhóm nguyên tử: Máy quang phổ hồng ngoại :1 2 2’ 3 45||||Truyền quang (%)1004000300020001000cm-10Số sóngChú thích:1.Nguồn bức xạ hồng ngoại2. Cuvet đựng mẫu2’. Cuvet đựng dung dịch so sánh3. Quang kế đơn sắc4. Detector5. Cấu trúc ghi phổSơ đồ phổ quang kế hồng ngoại hai tia sáng:Pic ở 3000 cm-1: Dao động co dãn liên kết C-H trong -CH3.Pic ở 1430, 1370 cm-1: Dao động đối xứng và bất đối xứng của CH3.Pic ở 1724 cm-1: Dao động của CO.Pic ở 1218 cm-1: Dao động của tổ hợp nhóm C-(C=O)-C Hợp chất này là CH3(C=O)CH3Phổ hồng ngoại của C3H6O Ứng dụng của phương pháp phổ dao động:Nhận biết các chất : Xác định tạp chất :Khi một chất có lẫn tạp chất, sự xuất hiện thêm các đám phổ sẽ làm “nhòe” phổ. Khi tạp chất hấp thụ mạnh một bức xạ IR đó mà thành phần chính không hấp thụ thì việc xác định rất thuận lợi, ví dụ trong một hidrocacbon có lẫn một lượng nhỏ xeton thì tần số hấp thụ ở 1720 cm-1 chứng tỏ điều đó vì hidrocacbon thực tế không hấp thụ vùng phổ này. Phân tích định lượng:Việc phân tích định lượng cũng dựa vào hệ thức Lambert – Beer: A = lg(Io/I) = abC II.2.2.5. Phương pháp điện thế Nguyên tắc chung:Nguyên tắc của phương pháp là đo điện thế cân bằng của cực chỉ thị để xác định nồng độ cân bằng của chất cần phân tích hoặc theo dõi sự biến thiên nồng độ của nó khi chất đó tham gia phản ứng với một chất khác (phương pháp chuẩn độ điện thế).Từ năm 1966, phương pháp phân tích đo điện thế có một bước tiến lớn nhờ sự phát minh ra một loại điện cực mới gọi là điện cực chọn lọc ion (sau đây sẽ ký hiệu là CLI) tức là các điện cực phản hồi một cách chọn lọc đối với các ion khác nhau. Khi đo điện thế, ta không xác định thế cân bằng tuyệt đối của một cực riêng biệt mà chỉ xác định thế của nó so với thế của một cực dùng làm chuẩn, có thể không thay đổi như cực Ag/AgCl hay Hg/HgCl2, gọi là điện cực so sánh. Cực mà thế của nó biến thiên theo nồng độ (chính xác là hoạt độ của chất cần đo gọi là cực chỉ thị). Như vậy điện thế đo được E = φct – φss + φj Trong đó: φct: thế của điện cực chỉ thị; φss: thế của điện cực so sánh; φj: thế khuếch tán. φss và φj không đổi trong quá trình đo.II.2.2.5.1. Phương pháp điện thế/các loại điện cực chọn lọc ion Giới thiệu:Điện cực màng rắn: có thể là màng đồng thể hay dị thể. Cực màng rắn đồng thể thường được chế tạo từ các loại đơn tinh thể, ví dụ đơn tinh thể LaF3, từ muối nóng chảy đông rắn, từ bột muối nén dưới áp suất cao. Điện cực màng rắn dị thể: tinh thể các chất có khả năng dẫn điện bằng ion được phân bố đều vào khung tạo màng thích hợp như polietilen, PVC, ...Điện cực màng rắn đồng thể tuy cho độ lặp lại và độ chính xác cao nhưng khó chế tạo, điện cực màng rắn dị thể và màng mỏng đễ chế tạo hơn. Dung dịch trongCực so sánh trongMàng chọn lọc ionChất lỏng hữu cơ trao đổi ionCực Ag/AgClĐiện cực chọn lọc màng rắn Điện cực chọn lọc màng lỏng Điện cực màng lỏng có khả năng trao đổi ion: đó là một màng polime mỏng chứa chất trao đổi ion. 	Điện Cực chọn lọc màng lỏng để xác định Ca2+ dung dịch trong là CaCl2 nồng độ không đổi, trong đó có điện cực so sánh trong Ag/AgCl. Màng xốp polime kỵ nước chứa ionit lỏng hữu cơ của Ca2+, một phía tiếp xúc với dung dịch trong, phía kia tiếp xúc với dung dịch phân tích. Nguyên lý làm việc của điện cực màng rắn: sơ đồ bố trí mạch đoCực CLICực soDung dịchDung dịchCực soKhi nối cực CLI với cực so sánh ngoài, sức điện động của pin: 	E = φ2 + ∆φM – φ1 (∆φM: điện thế màng, φ2 + ∆φM = φCLI). Trong trường hợp đơn giản nhất, dung dịch chỉ chứa ion j và không có ion cản trở thì 	aj(1), aj(2) là hoạt độ ion j trong các dung dịch tương ứng; aj(2) = constant và Z là điện tích ion nên có thể rút gọn biểu thức trên  φCLI = f(lnaj(1)) Nếu trong dung dịch có các ion cản trở là i, hoạt độ là ai, hệ số chọn lọc của ion j đối với i là Kij thì theo công thức Niconsky, ta có:Như vậy trong trường hợp đơn giản và phép đo thực hiện ở 250C thì thay tất cả các số hạng là hằng số vào công thức trên ta sẽ có:Ea là hằng số của riêng từng điện cực CLI Phân tích định lượng:Phương pháp đường chuẩn: Từ biểu thức trên có thể xác định được aNhưng giá trị cần tìm là C, a= f.C. Khi xây dựng đường chuẩn ta pha các dung dịch có C biết trước nên để từ a suy ra C tương ứng, phải giữ hệ số f (hệ số hoạt độ) không đổi, mà: Ci, Zi là nồng độ và điện tích của các ion trong dung dịch. Do đó, muốn giữ f không đổi ta phải giữ μ không đổi. Muốn vậy, người ta thêm vào dung dịch điện ly có nồng độ tương đối lớn và không đổi (tiếng Anh viết tắt là TISAB: Total Ionic Strength Adjustment Buffer: dung dịch đệm chỉnh lực ion). Khi chuẩn bị các dung dịch đều phải thêm dung dịch đệm này như nhau. Từ đường chuẩn E –C, với dung dịch có nồng độ Cx sau khi đo được Ex ta có thể tìm được Cx.và Phương pháp thêm chuẩn: để xác định nồng độ Cx của một ion (dung dịch ta được chuẩn bị với lực ion không đổi), lấy một thể tích Vo, đo được E1. Sau đó thêm một thể tích rất nhỏ và nồng độ Ca đã biết. Đo lại điện thế, được E2. Từ biểu thức quan hệ nồng độ và điện thế dễ dàng tìm được Cx.Dung dịch trongCực so sánh trong (Ag/AgCl)Màng thủy tinhCấu tạo điện cực thủy tinh Ứng dụng: Đo pH bằng điện cực thủy tinh: Điện cực thủy tinh là loại điện cực chọn lọc ion (ion H+) ra đời sớm nhất. Màng chọn lọc ion H+ là màng thủy tinh có cấu tạo theo sơ đồ hình sau. Sơ đồ mạch đo cũng tương tự mạch đo điện thế điện cực chon lọc ion, chỉ khác là dung dịch trong là một dung dịch đệm có xác định. Cũng lập các phép tính như đối với điện cực chọn lọc ion, cuối cùng ta sẽ có: E = const = 0,059 pH (với pH = - lgaH+). Điện cực thủy tinh là điện cực tốt nhất để đo pH trong khoảng pH = 2 – 10. Từ pH ≥ 11, phép đo không chính xác vì ảnh hưởng của các ion Na+, K+  II.2.2.5.2. Phương pháp phân tích Von – Ampe (pp cực phổ)	Phương pháp Von – Ampe là tên gọi chung của nhóm các phương pháp phân tích dựa vào việc nghiên cứu đường cong phân cực biểu diễn quan hệ giữa điện thế và cường độ dòng khi điện phân dung dịch nghiên cứu với các điện cực làm việc đặc biệt: một trong 2 điện cực có diện tích bề mặt rất nhỏ và nhỏ hơn nhiều lần so với diện tích bề mặt của cực kia. Điện cực bé đó gọi là vi điện cực, có thể là catốt hay anốt. Phương pháp Von – Ampe dựa trên quá trình điện phân với điện cực giọt Hg thường được gọi là phương pháp cực phổ.* Nguyên tắc chung:Xét trường hợp điệp phân với vi điện cực là giọt Hg, đóng vai trò catốt và anốt là một lớp Hg ở đáy bình điện phân. Sau này người ta hay dùng anốt là cực Calomen. Gọi E là điện thế giữa 2 cực, φA là thế anốt, φK là thế catốt, R là điện trở toàn mạch, I là cường độ dòng, lúc đó: E = φA – φK + IR I thường rất bé (10-5 – 10-7A), R rất nhỏ nên có thể bỏ qua số hạng IR. Vì điện cực anốt có bề mặt rất lớn, mật độ dòng rất nhỏ nên hầu như không có phản ứng điện cực xảy ra ở anốt và φA có thể coi như không đổi. Do đó có thể coi như E = - φK = f(I). 1. Nguồn điện	2. Bình điện phân 3. Anốt 4. Catốt	5. Điện kế	6. Biến trở Giọt Hg chảy ra từ mao quản, đường kính trong khoảng 0,03 mm, tốc độ chảy 3 – 4 giây/giọt. Điện phân bằng dòng điện 1 chiều, điện thế đặt vào 2 cực có thể điều chỉnh nhờ biến trở 6.243156* Sự phân cực trên điện cực giọt Hg-+Ta nghiên cứu một trường hợp cụ thể, ví dụ điện phân dung dịch ZnSO4 10-3M. Tăng điện thế từ từ theo tốc độ đều, ghi dòng tương ứng. * Sóng cực phổ. Tiếp tục tăng điện thế thì xảy ra phản ứng: Zn2+ + 2e = Zn(Hg) (hỗn hống Zn).Nồng độ của ion kim loại ở lớp sát điện cực giảm, sự chênh lệch giữa CO ở sâu trong dung dịch và CM ở sát điện cực tăng, dẫn đến sự khuếch tán tăng và cường độ dòng cũng tăng (đoạn BC). Nhưng khi tăng điện thế đến một giá trị nào đó, vận tốc khuếch tán bằng vận tốc khử, lúc đó C0 - CM = 0 và do dòng rất nhỏ (~10-5A) nên CO thực tế không đổi vì thế sau đó dù tăng điện thế thì dòng hầu như không đổi – Dòng này gọi là dòng giới hạn và cường độ phụ thuộc CO (đoạn CD). Đường cong ABCD gọi là sóng cực phổ. Sóng cực phổ.+ Khi điện thế chưa đạt đến giá trị để xảy ra phản ứng khử ion H+, ta thấy xuất hiện dòng rất bé gần như nằm ngang (đoạn AB) gọi là dòng dư Ir – Dòng dư này gồm dòng tụ Ic và dòng Faraday If, cường độ khoảng 10-7A. Dòng tụ sinh ra do ở bề mặt điện cực xuất hiện lớp điện kép coi như là một tụ điện – Dòng Faraday do sự khử các vết tạp chất, oxy Vậy, dòng dư Ir = Ic + If. Tuy nhiên, thực tế dòng giới hạn gồm 2 thành phần:Dòng khuếch tán Ikt phụ thuộc vào vận tốc khuếch tán, (chênh lệch nồng độ).Dòng vận chuyển Ivc do tác dụng của điện trường (điện tích âm của catốt hút điện tích dương là ion dương).Các phương trình tính toán sau này chỉ áp dụng cho trường hợp khi không còn dòng vận chuyển Ivc, tức là dòng giới hạn Id chỉ hoàn toàn do hiện tượng khuếch tán (Id = Ikt)Để loại bỏ dòng vận chuyển người ta thêm vào dung dịch những chất điện li trơ (không có phản ứng ở điện cực) nồng độ tương đối lớn như KCl, Na2SO4, NH4Cl (và các chất tạo phức, dung dịch đệm ...) gọi là “chất nền” cực phổ; các ion K+, Na+ tạo thành “tường chắn” điện trường tác dụng lên các ion dương (ion kim loại), nếu điện cực giọt làm catốt.Nhiều khi sóng cực phổ bị biến dạng do xuất hiện sự tăng đột ngột dòng khuếch tán, gọi là các “cực đại”: cực đại xuất hiện trong một khoảng thế hẹp (loại 1), cực đại xuất hiện và kéo dài trong một khoảng thế khá rộng (loại 2). Các yếu tố ảnh hưởng đến dạng sóng cực phổ:EIaba: Cực đại loại 1b: Cực đại loại 2Các cực đại trên sóng cực phổ Cực đại loại 1: Sự tăng đột ngột của dòng trong một khoảng thế rất hẹp. Do chuyển động bề mặt của giọt Hg làm tăng cường độ dòng khuếch tán. Để loại bỏ các cực đại, người ta thêm 1 lượng rất nhỏ các chất hoạt động bề mặt như gelatin, aga Cực đại loại 2: Sự tăng đột ngột của dòng trong một khoảng thế rộng. Do trong dung dịch nghiên cứu luôn luôn có oxi hoà tan mà O2 trong môi trường axit cũng như môi trường kiềm khi bị khử tạo ra 2 sóng. 	Để tránh sóng nhiễu của O2 cần loại bỏ nó trước khi ghi sóng cực phổ. Muốn vậy người ta cho khí trơ sạch O2 như N2, H2, Ar thổi qua dung dịch một thời gian. Trong môi trường kiềm có thể thêm một ít tinh thể Na2SO3 tinh khiết vào dung dịch.Phân tích bằng phương pháp cực phổ:Phân tích định tính: IEE1/2 Xác định E1/2 trên sóng cực phổ1/2 E E IIId ln- Thế ứng với ½ chiều cao sóng cực phổ là một đại lượng không đổi, chỉ phụ thuộc bản chất các chất nghiên cứu và “chất nền cực phổ”. Do đó có thể dựa vào thế nửa sóng (1/2) để nhận biết các chất (trong thực tế giá trị đo được là E1/2 khi so sánh với thế điện cực Calomen có φ không đổi).Có thể tìm E1/2 như hình trên 	hay theo phương trình sóng cực phổ: (khi I =1/2 Id, thì E=E1/2) (Id: cường độ dòng giới hạn )Quan hệ giữa Id và CM (nồng độ ion kim loại) được biểu diễn bởi phương trình Inkovitch: 	Id = 605.n.D1/2.m2/3.t1/6.CMTrong đó:n: số e tham gia phản ứng khử ở điện cực.D: hệ số khuếch tán, cm2.s-1m: khối lượng Hg chảy ra từ mao quản trong 1 giây (mg.s-1)t: thời gian tạo giọt Hg (s), CM: nồng độ ion kim loại (mmol/l)Nếu duy trì D, m, t không đổi thì phương trình trên có dạng thu gọn: Id = K.CM Dựa vào hệ thức này có thể xác định nồng độ CM theo đường chuẩn Id – CM, hoặc theo phương pháp thêm chuẩn. Phân tích định lượng:II.2.2.6. Phương pháp sắc kýNguyên tắc:Phương pháp sắc ký là phương pháp tách các chất dựa vào sự phân bố của chúng giữa hai pha động và tĩnh tiếp xúc với nhau nhưng không trộn lẫn. Trong hệ thống sắc ký pha tĩnh không di chuyển, pha động di chuyển qua sắc ký. Các thành phần có trong mẫu phân tích khi tiếp xúc với hai pha tĩnh và động sẽ tương tác với hai pha này và phân bố trong hai pha đó. Sự tương tác này lặp đi lặp lại khi các thành phần này di chuyển theo pha động. Thành phần nào tương tác mạnh (phân bố nhiều) với pha tĩnh sẽ di chuyển chậm, ngược lại thành phần nào tương tác yếu với pha tĩnh (phân bố vào pha tĩnh ít) sẽ di chuyển nhanh. Kết quả là các thành phần có trong mẫu sẽ được tách ra thành từng dải trong pha động. Có nhiều nguyên nhân khác nhau dẫn đến sự phân bố trong hai pha như khả năng hòa tan của các thành phần trong hai pha, khả năng hấp phụ, trao đổi ion, kích thước các phân tử,..nhưng chính sự lặp đi lặp lại hiện tượng hấp phụ - phản hấp phụ của các chất khi dòng pha động chuyển động qua pha tĩnh là nguyên nhân chủ yếu của việc tách sắc ký. Pha động là các lưu thể (các chất ở trạng thái khí hoặc lỏng), pha tĩnh có thể là các chất ở trạng thái lỏng giữ trên một chất mang rắn hoặc rắn. - Phân loại các phương pháp sắc ký: * Tùy theo các dạng pha tĩnh và pha động và cơ chế phân bố người ta có thể chia các phương pháp sắc ký thành một số nhóm chính sau:Sắc ký lỏng: Sắc ký lỏng - lỏng; Sắc ký lỏng - rắnSắc khý khí: Sắc ký khí - lỏng; Sắc ký khí - rắn* Theo hiện tượng sắc ký: gồm có: sắc ký hấp phụ, sắc ký phân bố, sắc ký trao đổi ion, sắc ký theo loại cỡ.Hệ số phân bố: 	Hệ số phân bố D được xác định bởi ái lực của chất tan đối với hai pha. Trong sắc ký D là tỷ số nồng độ tổng của chất tan trong pha tĩnh CS và pha động CM:	 D= CS/CM	D càng lớn thì chất đó phân bố càng nhiều trong pha tĩnh và di chuyển càng chậm.Thể tích lưu và thời gian lưu: Thời gian lưu tr (retention time) là thời gian từ khi nạp chất tan vào cột sắc ký đến khi xuất hiện nồng độ cực đại ở detector. Thể tích lưu tương ứng VR (retention volume) tỷ lệ với tR	 VR = tR x Fc (trong đó Fc là lưu tốc, ml/phút)- Đặc trưng của chất tan:Tốc độ di chuyển của một chất có thể được đặc trưng bởi hệ số phân bố D của nó giữa hai pha hoặc bởi các đại lượng về sự lưu giữ của chất đó trên pha tĩnh (thời gian lưu, thể tích lưu)Gọi tM là thời gian đi qua cột sắc ký của chất tan không bị lưu, thì đó cũng là thời gian lưu của pha động (coi như thời gian chết). VM gọi là “thể tích chết” cũng chính là thể tích pha động đi qua cột.Người ta còn dùng một tham số khác là tỷ số phân bố K, là tỷ số số mol chất tan trong pha tĩnh và pha động: K= (Cs.Vs)/(Cm.Vm) = D.(Vs/Vm). Trong phương pháp sắc ký người ta thường phải chọn điều kiện để điều chỉnh sao cho K nhỏ hơn khoảng 20, nếu không thời gian lưu quá dài không chấp nhận được. tM tR N?ng đ? Thời điểm nạp mẫuThời gian lưu, phútNồng độSắc đồ của một chấtGC dựa trên nguyên tắc sau: khi một hỗn hợp các chất bay hơi được khí mang (pha động) vận chuyển qua cột chứa một chất hấp phụ rắn hoặc thông thường hơn là qua một pha lỏng hấp phụ lên một chất rắn (pha tĩnh), mỗi thành phần hơi đó được phân bố trong khí mang và chất rắn hoặc chất lỏng.Tùy theo thời gian lưu, mỗi thành phần hơi sẽ thoát ra khỏi cột sắc ký ở các thời gian khác nhau và được xác định bởi detector thích hợp, có thể xác định định tính cũng như định lượng. Nguyên tắc:- Sắc ký khí (GC):Khả năng phân tách rất cao, ngay cả đối với những hỗn hợp phức tạp; Độ nhạy, độ chính xác và độ tin cậy rất cao; Thời gian phân tích ngắn, Có thể phân tích hàng loạt.+ Ưu điểm :Thiết bị GC:6134578921. Bộ cung cấp khí mang;	2. Bộ điều chỉnh áp suất;	3. Bộ đo lưu lượng; 	4. Bộ nạp mẫu;	5. Cột sắc ký;	6. Buồng ổn nhiệt;7. Detector;	8. Bộ khuếch đại điện tử;	9. Bộ xử lý tín hiệu Cột nhồi: 	Thường chế tạo dạng ống bằng thép không gỉ, thủy tinh. Đường kính 1,6 – 9,5 mm, chiều dài khoảng 3m. Trong sắc ký khí – rắn vật liệu nhồi cột thường là Silicagel, polime xốp hoặc sàng phân tử như Zeolit. Trong sắc ký khí – lỏng chất nhồi cột đóng vai trò chất mang pha lỏng (pha tĩnh), chất lỏng là chất không bay hơi được tẩm lên chất mang thành một lớp mỏng. Chất lỏng thường dùng là dầu Silicol, polietilen glycol Chất mang thường là đất Diatomit, gạch chịu lửa nghiền. Cột sắc ký: Có hai cột: cột nhồi và cột hở hay cột mao quản. Cột mao quản: Thường dùng là cột mao quản hở, trên thành cột có một lớp chất lỏng mỏng, đều, đường kính trong của cột nhỏ hơn 1mm, chiều dài từ 30 – 90 mm. Cột thường được chế tạo từ kim loại, thủy tinh hoặc chất dẻo.Khí mang: 	Trong GC, khí mang là khí dùng để vận chuyển các chất khí nghiên cứu qua cột sắc ký, đó chính là pha động. Khí mang phải là các khí trơ, không tương tác với mẫu, với pha tĩnh, với các bộ phận tiếp xúc, phải có độ tinh khiết cao (ít nhất là 99,995%), phải chọn cho phù hợp với Detector và các yêu cầu khác về phân tích. Ngoài ra phải chọn khí mang có giá thành rẻ và an toàn, tùy từng trường hợp có thể dùng N2, H2, He, Ar, O2 và không khí.+ Detector:Ghi các tín hiệu thu được từ quá trình sắc ký, phân tích tín hiệu và biết được các chất cần phân tích, tách.Trong GC hiện nay người ta sử dụng Detector dẫn nhiệt, Detector ion hóa ngọn lửa, Detector hấp thụ electron* Detector ion hóa ngọn lửa (FID: Flame Ionization Detetor): Dựa vào sự thay đổi độ dẫn điện của ngọn lửa H2 đặt trong một điện trường khi có chất hữu cơ cần tách chuyển qua. Trong ngọn lửa của riêng H2 và không khí, độ dẫn điện thấp nên dòng điện đo được bé. Khi có các chất có khả năng ion hóa mạnh hơn từ cột sắc ký ra đi vào ngọn lửa, bị đốt nóng, bị ion hóa, dòng điện sẽ tăng mạnh. Detector này có độ nhậy cao gấp hàng trăm đến hàng nghìn lần so với TCD và phản hồi với hầu hết các chất hữu cơ trừ axit fomic, andehitfomic. Có thể đo được những dòng điện đến 10-12A, phát hiện được đến 10-9 gam. * Detector cộng kết điện tử (ECD: Electron Capture Detector): Dựa vào ái lực khác nhau của các chất đối với các electron tự do, đặc biệt rất thích hợp đối với các hợp chất Clo hóa, Alkyl chì có thể xác định được một số thuốc trừ sâu clo hóa đến mức picogam (10-12 gam). Độ nhạy cao. Phân tích bằng GC:Phân tích định tính:Từ sắc ký đồ ta sẽ nhận được các tín hiệu ứng với từng cấu tử gọi là các pic sắc ký. Thời gian lưu hay thể tích lưu của pic là đặc trưng định tính cho chất cần tách. So sánh thời gian lưu (thể tích lưu) của mẫu thử với mẫu chuẩn ghi ở cùng điều kiện. Phân tích định lượng: Tín hiệu thu được ở Detector tỷ lệ với nồng độ hoặc hàm lượng các cấu tử. Tín hiệu ở đây thường là chiều cao pic, diện tích pic. Để đạt được hiệu quả phân tích đúng, điều cần thiết là phải tách các cấu tử cần nghiên cứu một cách hoàn chỉnh, không có sự xen phủ pic này với pic khác. Ứng dụng của phương pháp sắc ký: Phân tích sắc ký được ứng dụng để tách phân li, phân tích nhiều hợp chất khác nhau, vô cơ cũng như hữu cơ, đặc biệt là phân tích các hợp chất hữu cơ. Phương pháp này có thể tách và phân tích nhiều hỗn hợp phức tạp. 

File đính kèm:

  • pptbai_giang_phan_tich_moi_truong_hoang_van_hung.ppt
Ebook liên quan