Bài giảng Toán rời rạc - Nguyễn Thành Nhựt
Tóm tắt Bài giảng Toán rời rạc - Nguyễn Thành Nhựt: ...đồng thời đúng. Bảng chân trị P Q P∧Q 0 0 0 0 1 0 1 0 0 1 1 1 Ví dụ: - 3>4 và Trần Hưng Đạo là một vị tướng - 2 là số nguyên tố và 2 là số chẵn - An đang hát và uống nước I. Mệnh đề c. Phép nối rời (tuyển, hợp): của hai mệnh đề P, Q được kí hiệu bởi P ∨ Q (đọc là “P hay Q”), ...6 chia hết cho 2 - London là thành phố nước Anh nếu và chỉ nếu thành phố HCM là thủ đô của VN - π >4 là điều kiện cần và đủ của 5 >6 Bài tập Tại lớp: 1, 2, 4ab, 5 Về nhà: 3, 4cde, 6, 7, 8, 9 II. Dạng mệnh đề 1. ðịnh nghĩa: Dạng mệnh đề là một biểu thức được cấu tạo từ: - Các h...c nếu chúng có cùng bảng chân trị. Ký hiệu E ⇔ F (hay E ≡ F). Ví dụ ¬(p ∧ q)⇔ ¬p ∨ ¬ q Định lý: Hai dạng mệnh đề E và F tương đương với nhau khi và chỉ khi E↔F là hằng đúng. Tương đương logic 2. Luật De Morgan ¬ (p ∧ q) ⇔ ¬ p ∨ ¬ q ¬ (p ∨ q) ⇔ ¬ p ∧ ¬ q Các luật logic 1. Phủ định của phủ...
LOGO TOÁN RỜI RẠC Nguyễn Thành Nhựt HK2 NH 2010-2011 Lớp CNTN 2009 https://sites.google.com/site/nhutclass/toanroirac Nội dung: gồm 5 phần 1. Cơ sở logic 2. Quan hệ 3. Phép đếm 4. Hàm Bool 5. Đồ thị Thang điểm Sửa bài tập 20% Kiểm tra giữa kỳ 20% ðề tài TH nhóm 20% Thi cuối kỳ 40% Tài liệu 1. Slides bài giảng. 2. Giáo trình: 1. Toán rời rạc, Nguyễn Hữu Anh. 2. Toán rời rạc nâng cao, Trần Ngọc Danh. 3. Discrete Mathematics and its applications, Kenneth H. Rosen. Chương I: Cơ sở logic Nội dung: - Mệnh đề - Dạng mệnh đề - Qui tắc suy diễn - Vị từ, lượng từ - Qui nạp toán học I. Mệnh đề 1. Định nghĩa: Mệnh đề là một khẳng định có giá trị chân lý xác định, đúng hoặc sai. Câu hỏi, câu cảm thán, mệnh lệnhF không là mệnh đề. Ví dụ: - mặt trời quay quanh trái đất. - 1+1 =2. - Hôm nay trời đẹp quá ! (không là mệnh đề) - Học bài đi ! (không là mệnh đề) - 3 là số chẵn phải không? (không là mệnh đề) I. Mệnh đề Ký hiệu: người ta dùng các ký hiệu P, Q, RF để chỉ mệnh đề. Chân trị của mệnh đề: Một mệnh đề chỉ có thể đúng hoặc sai, không thể đồng thời vừa đúng vừa sai. Khi mệnh đề P đúng ta nói P có chân trị đúng, ngược lại ta nói P có chân trị sai. Chân trị đúng và chân trị sai sẽ được ký hiệu lần lượt là 1 (hay ð,T) và 0 (hay S,F) Bài tập làm ngay Kiểm tra các khẳng định sau có phải là mệnh đề không? - Paris là thành phố của Mỹ. - n là số tự nhiên. - con nhà ai mà xinh thế! - 3 là số nguyên tố. - Toán rời rạc là môn bắt buộc của ngành Tin học. - Bạn có khỏe không? - x2 +1 luôn dương. I. Mệnh đề 2. Phân loại: gồm 2 loại a. Mệnh đề sơ cấp (nguyên thủy): thường là một mệnh đề khẳng định đơn. b. Mệnh đề phức hợp: là mệnh đề được xây dựng từ các mệnh đề sơ cấp nhờ liên kết bằng các liên từ (và, hay, khi và chỉ khi,F) hoặc trạng từ “không”. Ví dụ: - 2 không là số nguyên tố - 2 là số nguyên tố (sơ cấp) - Nếu 3>4 thì trời mưa - An đang xem phim hay An đang học bài - Hôm nay trời đẹp và 1 +1 =3 I. Mệnh đề 3. Các phép toán: có 5 phép toán a. Phép phủ định: phủ định của mệnh đề P được ký hiệu là ¬P hay (đọc là “không” P hay “phủ định của” P). Bảng chân trị : P ¬P 1 0 P 0 1 Ví dụ : + 2 là số nguyên tố Phủ định: 2 không là số nguyên tố + 1 >2 Phủ định : 1≤ 2 I. Mệnh đề b. Phép nối liền (hội, giao): của hai mệnh đề P, Q được kí hiệu bởi P ∧ Q (đọc là “P và Q”), là mệnh đề được định bởi : P ∧ Q đúng khi và chỉ khi P và Q đồng thời đúng. Bảng chân trị P Q P∧Q 0 0 0 0 1 0 1 0 0 1 1 1 Ví dụ: - 3>4 và Trần Hưng Đạo là một vị tướng - 2 là số nguyên tố và 2 là số chẵn - An đang hát và uống nước I. Mệnh đề c. Phép nối rời (tuyển, hợp): của hai mệnh đề P, Q được kí hiệu bởi P ∨ Q (đọc là “P hay Q”), là mệnh đề được định bởi : P ∨ Q sai khi và chỉ khi P và Q đồng thời sai. Bảng chân trị P Q P ∨ Q 0 0 0 0 1 1 1 0 1 1 1 1 Ví dụ: - π >4 hay π >5 - 2 là số nguyên tố hay 2 là số chẵn I. Mệnh đề Ví dụ - “Hôm nay, An giúp mẹ lau nhà và rửa chén” - “Hôm nay, cô ấy đẹp và thông minh ” - “Ba đang đọc báo hay xem phim” I. Mệnh đề d. Phép kéo theo: Mệnh đề P kéo theo Q của hai mệnh đề P và Q, ký hiệu bởi P → Q (đọc là “P kéo theo Q” hay “Nếu P thì Q” hay “P là điều kiện đủ của Q” hay “Q là điều kiện cần của P”) là mệnh đề được định bởi: P → Q sai khi và chỉ khi P đúng mà Q sai. Bảng chân trị P Q P→Q 0 0 1 0 1 1 1 0 0 1 1 1 I. Mệnh đề Ví dụ: - Nếu 1 = 2 thì Lenin là người Việt Nam - Nếu trái đất quay quanh mặt trời thì 1 +3 =5 π- >4 kéo theo 5>6 - π < 4 thì trời mưa - Nếu 2+1=0 thì tôi là chủ tịch nước I. Mệnh đề e. Phép kéo theo hai chiều: Mệnh đề P kéo theo Q và ngược lại của hai mệnh đề P và Q, ký hiệu bởi P ↔ Q (đọc là “P nếu và chỉ nếu Q” hay “P khi và chỉ khi Q” hay “P là điều kiện cần và đủ của Q” hay “P tương đương với Q”), là mệnh đề xác định bởi: P ↔ Q đúng khi và chỉ khi P và Q có cùng chân trị Bảng chân trị P Q P↔Q 0 0 1 0 1 0 1 0 0 1 1 1 I. Mệnh đề Ví dụ: - 2=4 khi và chỉ khi 2+1=0 - 6 chia hết cho 3 khi và chi khi 6 chia hết cho 2 - London là thành phố nước Anh nếu và chỉ nếu thành phố HCM là thủ đô của VN - π >4 là điều kiện cần và đủ của 5 >6 Bài tập Tại lớp: 1, 2, 4ab, 5 Về nhà: 3, 4cde, 6, 7, 8, 9 II. Dạng mệnh đề 1. ðịnh nghĩa: Dạng mệnh đề là một biểu thức được cấu tạo từ: - Các hằng mệnh đề - Các biến mệnh đề p, q, r, , tức là các biến lấy giá trị là các mệnh đề nào đó - Các phép toán ¬, ∧, ∨, →, ↔ và dấu đóng mở ngoặc (). Dạng mệnh đề được gọi là hằng đúng nếu nó luôn lấy giá trị 1 Dạng mệnh đề gọi là hằng sai (hay mâu thuẫn) nếu nó luôn lấy giá trị 0. Ví dụ: E(p,q) = ¬(¬p ∧q) F(p,q,r) = (p → q) ∧ ¬(q ∧r) II. Dạng mệnh đề Bảng chân trị của dạng mệnh đề E(p,q,r): là bảng ghi tất cả các trường hợp chân trị có thể xảy ra đối với dạng mệnh đề E theo chân trị của các biến mệnh đề p, q, r. Nếu có n biến, bảng này sẽ có 2n dòng, chưa kể dòng tiêu đề. Ví dụ: E(p,q,r) =(p ∨q) →r . Ta có bảng chân trị sau II. Dạng mệnh đề p q r p∨q (p ∨q) →r 0 0 0 0 1 0 0 1 0 1 Mệnh đề E(p,q,r) =(p ∨q) →r theo 3 biến p,q,r có bảng chân trị sau 0 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 II. Dạng mệnh đề Bài tập: Lập bảng chân trị của những dạng mệnh đề sau E(p,q) = ¬(p ∧q) ∧p F(p,q,r) = p ∧(q ∨r) ↔ ¬q ðộ ưu tiên các phép toán 1. Ngoặc () 2. Phủ định 3. Và 4. Hay 5. Kéo theo 6. Kéo theo hai chiều Ví dụ: p ∨q →r hiểu là (p ∨q) →r p ∧(q ∨r) ↔ ¬q hiểu là (p ∧(q ∨r)) ↔ (¬q) Bài tập Tại lớp: 11ab, 12ab, 13abc Về nhà: 10, 11, 12, 13 TƯƠNG ðƯƠNG LOGIC II.2 Tương đương logic Định nghĩa: Hai dạng mệnh đề E và F được gọi là tương đương logic nếu chúng có cùng bảng chân trị. Ký hiệu E ⇔ F (hay E ≡ F). Ví dụ ¬(p ∧ q)⇔ ¬p ∨ ¬ q Định lý: Hai dạng mệnh đề E và F tương đương với nhau khi và chỉ khi E↔F là hằng đúng. Tương đương logic 2. Luật De Morgan ¬ (p ∧ q) ⇔ ¬ p ∨ ¬ q ¬ (p ∨ q) ⇔ ¬ p ∧ ¬ q Các luật logic 1. Phủ định của phủ định ¬ ¬ p ⇔ p 3. Luật giao hoán p ∨ q ⇔ q ∨ p p ∧ q ⇔ q ∧ p 4. Luật kết hợp (p ∨ q) ∨ r ⇔ p ∨ (q ∨ r) (p ∧ q) ∧ r p ∧ (q ∧ r) Tương đương logic 5. Luật phân phối p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r) p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r) 6. Luật lũy đẳng p ∨ p ⇔ p p ∧ p ⇔ p 7. Luật trung hòa p ∨ 0⇔ p p ∧ 1 ⇔ p Tương đương logic 8. Luật về phần tử bù p ∧ ¬ p ⇔ 0 p ∨ ¬ p⇔ 1 9. Luật thống trị p ∧ 0 ⇔ 0 p ∨ 1 ⇔ 1 10. Luật hấp thụ p ∨ (p ∧ q)⇔ p p ∧ (p ∨ q) ⇔ p Tương đương logic 11. Luật về phép kéo theo: p → q ⇔ ¬p ∨ q ⇔ ¬q→ ¬ p Ví dụ: Nếu trời mưa thì đường trơn ⇔ nếu đường không trơn thì trời không mưa Bài tập: Cho p, q, r là các biến mệnh đề. Chứng minh rằng: (¬p → r) ∧ (q→ r) ⇔ (p → q) → r Giải (¬p → r) ∧ (q → r) ⇔ ( p ∨ r ) ∧ (¬ q ∨ r) (luật 11. về phép kéo theo) ⇔ ( p∧ ¬ q ) ∨ r (luật phân phối) ⇔ ¬( ¬p ∨ q ) ∨ r (De Morgan) ⇔ ¬( p → q ) ∨ r (luật 11. về phép kéo theo) ⇔ ( p → q ) → r (luật 11. về phép kéo theo) Phép chứng minh đảo đề Ứng dụng luật về phép kéo theo p → q ⇔ ¬q→ ¬ p Để CM p → q đúng, ta CM ¬q→ ¬ p đúng. Ví dụ: Cho n là số tự nhiên. CM nếu n2 là số chẵn thì n là số chẵn. Ta CM nếu n là số lẻ thì n2 là số lẻ. Phép chứng minh phản ví dụ Ứng dụng luật về phép kéo theo kết hợp luật De Morgan p → q ⇔ ¬p ∨ q ¬ (p → q) ⇔ p ∧ ¬q. Để CM p → q sai, ta CM p đúng, q sai. “Phản ví dụ” = “trường hợp làm MĐ sai” Ví dụ: Cho n là số tự nhiên. “Nếu n2 chia hết cho 4 thì n cũng chia hết cho 4”. Để CM phát biểu trên sai ta tìm 1 số n nào đó không thoả. (chẳng hạn n = 6). Phép chứng minh phản chứng ðể CM p đúng ta CM nếu p sai thì suy ra điều vô lý hay mâu thuẫn. VD: CM căn bậc hai của 2 là số vô tỷ. Giải: Giả sử căn 2 là số hữu tỷ, tức là 21/2 = m/n (dạng tối giản) với m,n là các số nguyên và UCLN(m,n)=1. (m/n)2 = 2. Hay m2 = 2n2. Nên m chẵn Khi đó m=2k. Suy ra n2 = 2k2. Nên n cũng chẵn. Như vậy UCLN(m,n)>1 (mâu thuẫn). Bài tập Tại lớp: 14a, 15a, 16ab Về nhà: 14b Bài tập về nhà 1. ðọc lại slide bài giảng và chương liên quan trong giáo trình [1], [3]. 2. Làm bài tập liên quan còn lại trong giáo trình
File đính kèm:
- bai_giang_toan_roi_rac_nguyen_thanh_nhut.pdf